IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i1d10.1007_s11027-018-9797-9.html
   My bibliography  Save this article

Impact of climate change and anthropogenic pressure on the groundwater resources in arid environment

Author

Listed:
  • Emna Guermazi

    (University of Lausanne
    University of Sfax)

  • Marianne Milano

    (University of Lausanne)

  • Emmanuel Reynard

    (University of Lausanne)

  • Moncef Zairi

    (University of Sfax)

Abstract

Climate and anthropogenic changes are expected to reduce renewable groundwater resources and to increase the risks of water scarcity, particularly in arid regions. Understanding current and future risks of water scarcity is vital to make the right water management decision at the right time. This study aims to analyze the impact of both human and climate pressures on groundwater availability in an arid environment: the Regueb basin in Central Tunisia. An integrated approach was used and applied at a monthly time step over a reference period (1976–2005) and a future period (2036–2065). Groundwater resources were assessed using hydrogeological modeling. Irrigation water withdrawals were evaluated based on remote sensing and the CropWat model. Urban water use was estimated from population growth and specific monthly water consumption data. The resulting values were used to compute two indicators (water stress index, groundwater balance) to evaluate water scarcity risks at the 2050 horizon. To assess current and future climate forcing on water resources, three climate scenarios were generated based on simulations from Coupled Model Intercomparison Project Phase 5 (CMIP5) data. A business-as-usual and an adaptation scenario (optimal cropping scenario) were performed by varying the surface areas and the crops grown in the irrigated area. Results show that the average annual water use will increase by 3.8 to 16.4% under climate change only, whereas it will increase by 100% under the business-as-usual scenario. Under the optimal cropping scenario, total water demand will increase by 50%. Water stress index indicates that under the climate change only scenario, water demand should be satisfied by the 2050 horizon, while under the other two scenarios, severe water stress will occur by 2050. The developed framework in this paper aims to fit in arid and semiarid regions in order to evaluate groundwater stress and to assess the efficiency of adaptation strategies. It results in two major recommendations regarding changes in land use and the improvement of groundwater monitoring.

Suggested Citation

  • Emna Guermazi & Marianne Milano & Emmanuel Reynard & Moncef Zairi, 2019. "Impact of climate change and anthropogenic pressure on the groundwater resources in arid environment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(1), pages 73-92, January.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:1:d:10.1007_s11027-018-9797-9
    DOI: 10.1007/s11027-018-9797-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9797-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9797-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    2. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
    3. Carla Ximena Salinas & Jorge Gironás & Miriam Pinto, 2016. "Water security as a challenge for the sustainability of La Serena-Coquimbo conurbation in northern Chile: global perspectives and adaptation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(8), pages 1235-1246, December.
    4. R. Hadded & I. Nouiri & O. Alshihabi & J. Maßmann & M. Huber & A. Laghouane & H. Yahiaoui & J. Tarhouni, 2013. "A Decision Support System to Manage the Groundwater of the Zeuss Koutine Aquifer Using the WEAP-MODFLOW Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1981-2000, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2021. "Evaluation and Comparison of the Effectiveness Rate of the Various Meteorological Parameters on UNEP Aridity Index Using Backward Multiple Ridge Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 159-177, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariem Baccar & Jacques-Eric Bergez & Stephane Couture & Muddu Sekhar & Laurent Ruiz & Delphine Leenhardt, 2021. "Building Climate Change Adaptation Scenarios with Stakeholders for Water Management: A Hybrid Approach Adapted to the South Indian Water Crisis," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    2. Roberto D. Ponce Oliva & Esteban Arias Montevechio & Francisco Fernández Jorquera & Felipe Vásquez-Lavin & Alejandra Stehr, 2021. "Water Use and Climate Stressors in a Multiuser River Basin Setting: Who Benefits from Adaptation?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 897-915, February.
    3. J. Sun & Y. P. Li & X. W. Zhuang & S.W. Jin & G. H. Huang & R. F. Feng, 2018. "Identifying water resources management strategies in adaptation to climate change under uncertainty," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(4), pages 553-578, April.
    4. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    5. Ali Sardar Shahraki & Javad Shahraki & Seyed Arman Hashemi Monfared, 2021. "An integrated model for economic assessment of environmental scenarios for dust stabilization and sustainable flora–fauna ecosystem in international Hamoun wetland," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 947-967, January.
    6. Romero, Pascual & Botía, Pablo & del Amor, Francisco M. & Gil-Muñoz, Rocío & Flores, Pilar & Navarro, Josefa María, 2019. "Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting condi," Agricultural Water Management, Elsevier, vol. 225(C).
    7. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    8. Robyn Horan & Pawan S. Wable & Veena Srinivasan & Helen E. Baron & Virginie J. D. Keller & Kaushal K. Garg & Nathan Rickards & Mike Simpson & Helen A. Houghton-Carr & H. Gwyn Rees, 2021. "Modelling Small-Scale Storage Interventions in Semi-Arid India at the Basin Scale," Sustainability, MDPI, vol. 13(11), pages 1-28, May.
    9. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    10. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    11. Zhongwen Xu & Liming Yao & Yin Long, 2020. "Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives," Land, MDPI, vol. 9(11), pages 1-17, November.
    12. Dongying Sun & Jiarong Gu & Junyu Chen & Xilin Xia & Zhisong Chen, 2022. "Spatiotemporal differentiation and influencing factors of urban water supply system resilience in the Yangtze River Delta urban agglomeration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 101-126, October.
    13. Tiruye, A. E. & Belay, S. A. & Schmitter, Petra & Tegegne, Desalegn & Zimale, F. A. & Tilahun, S. A., 2023. "Yield, water productivity and nutrient balances under different water management technologies of irrigated wheat in Ethiopia," Papers published in Journals (Open Access), International Water Management Institute, pages 1-1(12):000.
    14. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    15. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    16. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    17. Muhammad Usman & Muhammad Wasim & Rao Bahkat Yawar, 2023. "Assessing the Economic Implications of Climate Change on Agriculture in Punjab in Pakistan: Farmers Perception and Satisfaction," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 12(3), pages 348-365.
    18. Jiahong Li & Xiaohui Lei & Yu Qiao & Aiqing Kang & Peiru Yan, 2020. "The Water Status in China and an Adaptive Governance Frame for Water Management," IJERPH, MDPI, vol. 17(6), pages 1-19, March.
    19. Saskia Keesstra & Jeroen Veraart & Jan Verhagen & Saskia Visser & Marit Kragt & Vincent Linderhof & Wilfred Appelman & Jolanda van den Berg & Ayodeji Deolu-Ajayi & Annemarie Groot, 2023. "Nature-Based Solutions as Building Blocks for the Transition towards Sustainable Climate-Resilient Food Systems," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    20. Tocados-Franco, Enrique & Berbel, Julio & Expósito, Alfonso, 2023. "Water policy implications of perennial expansion in the Guadalquivir River Basin (southern Spain)," Agricultural Water Management, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:1:d:10.1007_s11027-018-9797-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.