IDEAS home Printed from https://ideas.repec.org/a/spr/lsprsc/v11y2018i2d10.1007_s12076-018-0211-8.html
   My bibliography  Save this article

A mixed integer linear programming model to regulate the electricity sector

Author

Listed:
  • Michael L. Polemis

    (University of Piraeus
    Hellenic Competition Commission)

Abstract

This paper presents a mixed-integer linear programming model for the optimal long-term electricity planning of the Greek wholesale generation system. In order to capture more accurately the technical characteristics of the problem, we have divided the Greek territory into a number of individual interacted networks (geographical zones). In the next stage we solve the system of equations and provide simulation results for the daily/hourly energy prices based on the different scenarios adopted. The empirical findings reveal an inverted-M shaped curve for electricity demand in Greece, while the system marginal price curve also follows a non-linear pattern. Lastly, given the simulations results, we provide the necessary policy implications for government officials, regulators and the rest of the marketers.

Suggested Citation

  • Michael L. Polemis, 2018. "A mixed integer linear programming model to regulate the electricity sector," Letters in Spatial and Resource Sciences, Springer, vol. 11(2), pages 183-208, July.
  • Handle: RePEc:spr:lsprsc:v:11:y:2018:i:2:d:10.1007_s12076-018-0211-8
    DOI: 10.1007/s12076-018-0211-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12076-018-0211-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12076-018-0211-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dagoumas, Athanasios S. & Polemis, Michael L., 2017. "An integrated model for assessing electricity retailer’s profitability with demand response," Applied Energy, Elsevier, vol. 198(C), pages 49-64.
    2. Downward, Anthony & Young, David & Zakeri, Golbon, 2016. "Electricity retail contracting under risk-aversion," European Journal of Operational Research, Elsevier, vol. 251(3), pages 846-859.
    3. Fiorio, Carlo V. & Florio, Massimo, 2013. "Electricity prices and public ownership: Evidence from the EU15 over thirty years," Energy Economics, Elsevier, vol. 39(C), pages 222-232.
    4. Polemis, Michael L. & Dagoumas, Athanasios S., 2013. "The electricity consumption and economic growth nexus: Evidence from Greece," Energy Policy, Elsevier, vol. 62(C), pages 798-808.
    5. Cédric Clastres & Haikel Khalfallah, 2015. "An analytical approach for elasticity of demand activation with demand response mechanisms," Post-Print hal-01252111, HAL.
    6. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Georgiadis, Michael C. & Papaioannou, George & Dikaiakos, Christos, 2016. "A mid-term, market-based power systems planning model," Applied Energy, Elsevier, vol. 179(C), pages 17-35.
    7. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    8. Philpott, A. B. & Craddock, M. & Waterer, H., 2000. "Hydro-electric unit commitment subject to uncertain demand," European Journal of Operational Research, Elsevier, vol. 125(2), pages 410-424, September.
    9. Clastres, Cédric & Khalfallah, Haikel, 2015. "An analytical approach to activating demand elasticity with a demand response mechanism," Energy Economics, Elsevier, vol. 52(PA), pages 195-206.
    10. Cédric Clastres & Haikel Khalfallah, 2015. "An Analytical Approach to Activating Demand Elasticity with a Demand Response Mechanism," Post-Print hal-01222582, HAL.
    11. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
    12. Frank A. Wolak, 2011. "Do Residential Customers Respond to Hourly Prices? Evidence from a Dynamic Pricing Experiment," American Economic Review, American Economic Association, vol. 101(3), pages 83-87, May.
    13. Genc, Talat S., 2016. "Measuring demand responses to wholesale electricity prices using market power indices," Energy Economics, Elsevier, vol. 56(C), pages 247-260.
    14. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Kopanos, Georgios M. & Pistikopoulos, Efstratios N. & Georgiadis, Michael C., 2014. "A spatial multi-period long-term energy planning model: A case study of the Greek power system," Applied Energy, Elsevier, vol. 115(C), pages 456-482.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dagoumas, Athanasios S. & Polemis, Michael L., 2017. "An integrated model for assessing electricity retailer’s profitability with demand response," Applied Energy, Elsevier, vol. 198(C), pages 49-64.
    2. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    3. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Panapakidis, Ioannis P., 2017. "Impact of the penetration of renewables on flexibility needs," Energy Policy, Elsevier, vol. 109(C), pages 360-369.
    4. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    5. Tang, Bao-Jun & Li, Ru & Li, Xiao-Yi & Chen, Hao, 2017. "An optimal production planning model of coal-fired power industry in China: Considering the process of closing down inefficient units and developing CCS technologies," Applied Energy, Elsevier, vol. 206(C), pages 519-530.
    6. repec:eco:journ2:2017-04-08 is not listed on IDEAS
    7. Daeho Kim & Dong Gu Choi, 2023. "The aggregator’s contract design problem in the electricity demand response market," Operational Research, Springer, vol. 23(1), pages 1-47, March.
    8. Dagoumas, Athanasios S. & Koltsaklis, Nikolasos E. & Panapakidis, Ioannis P., 2017. "An integrated model for risk management in electricity trade," Energy, Elsevier, vol. 124(C), pages 350-363.
    9. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    10. Afful-Dadzie, Anthony & Afful-Dadzie, Eric & Awudu, Iddrisu & Banuro, Joseph Kwaku, 2017. "Power generation capacity planning under budget constraint in developing countries," Applied Energy, Elsevier, vol. 188(C), pages 71-82.
    11. Polemis, Michael L., 2016. "New evidence on the impact of structural reforms on electricity sector performance," Energy Policy, Elsevier, vol. 92(C), pages 420-431.
    12. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    13. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    14. Michael L. Polemis & Thanasis Stengos, 2017. "Electricity Sector Performance: A Panel Threshold Analysis," The Energy Journal, , vol. 38(3), pages 141-158, May.
    15. Zhang, Ning & Hu, Zhaoguang & Shen, Bo & Dang, Shuping & Zhang, Jian & Zhou, Yuhui, 2016. "A source–grid–load coordinated power planning model considering the integration of wind power generation," Applied Energy, Elsevier, vol. 168(C), pages 13-24.
    16. Dagoumas, Athanasios & Polemis, Michael, 2018. "Analysing Carbon Pass-Through Rate Mechanism in the Electricity Sector: Evidence from Greece," MPRA Paper 91067, University Library of Munich, Germany.
    17. Allard, Stéphane & Debusschere, Vincent & Mima, Silvana & Quoc, Tuan Tran & Hadjsaid, Nouredine & Criqui, Patrick, 2020. "Considering distribution grids and local flexibilities in the prospective development of the European power system by 2050," Applied Energy, Elsevier, vol. 270(C).
    18. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    19. Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
    20. Mertens, Tim & Poncelet, Kris & Duerinck, Jan & Delarue, Erik, 2020. "Representing cross-border trade of electricity in long-term energy-system optimization models with a limited geographical scope," Applied Energy, Elsevier, vol. 261(C).
    21. Persefoni Mitropoulou & Eirini Papadopoulou & Georgia Dede & Christos Michalakelis, 2022. "Forecasting Competition in the Electricity Market of Greece: a Prey-Predator Approach," SN Operations Research Forum, Springer, vol. 3(3), pages 1-31, September.

    More about this item

    Keywords

    Electricity market; Linear programming; Constraints; Day-ahead scheduling; Greece;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lsprsc:v:11:y:2018:i:2:d:10.1007_s12076-018-0211-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.