Securing transportation web applications: An AI-driven approach to detect and mitigate SQL injection attacks
Author
Abstract
Suggested Citation
DOI: 10.1007/s12198-023-00269-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Maha Alghawazi & Daniyal Alghazzawi & Suaad Alarifi, 2023. "Deep Learning Architecture for Detecting SQL Injection Attacks Based on RNN Autoencoder Model," Mathematics, MDPI, vol. 11(15), pages 1-12, July.
- Sepideh Radhoush & Trevor Vannoy & Kaveen Liyanage & Bradley M. Whitaker & Hashem Nehrir, 2023. "Distribution System State Estimation and False Data Injection Attack Detection with a Multi-Output Deep Neural Network," Energies, MDPI, vol. 16(5), pages 1-22, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Muhammad Awais Shahid & Fiaz Ahmad & Rehan Nawaz & Saad Ullah Khan & Abdul Wadood & Hani Albalawi, 2023. "A Novel False Measurement Data Detection Mechanism for Smart Grids," Energies, MDPI, vol. 16(18), pages 1-17, September.
- Guoqing Zhang & Wengen Gao & Yunfei Li & Xinxin Guo & Pengfei Hu & Jiaming Zhu, 2023. "Detection of False Data Injection Attacks in a Smart Grid Based on WLS and an Adaptive Interpolation Extended Kalman Filter," Energies, MDPI, vol. 16(20), pages 1-20, October.
- Murilo Eduardo Casteroba Bento, 2024. "Load Margin Assessment of Power Systems Using Physics-Informed Neural Network with Optimized Parameters," Energies, MDPI, vol. 17(7), pages 1-20, March.
More about this item
Keywords
AI-based detection; SQL injection attacks; Transportation web applications; Cybersecurity; Natural language processing; Logistic regression; Oversampling; Undersampling; Feature selection; Class imbalance; Pattern recognition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jtrsec:v:17:y:2024:i:1:d:10.1007_s12198-023-00269-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.