IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v21y2018i5d10.1007_s10951-018-0572-2.html
   My bibliography  Save this article

A new algorithm based on evolutionary computation for hierarchically coupled constraint optimization: methodology and application to assembly job-shop scheduling

Author

Listed:
  • Pan Zou

    (Georgia Institute of Technology)

  • Manik Rajora

    (Georgia Institute of Technology)

  • Steven Y. Liang

    (Georgia Institute of Technology)

Abstract

Hierarchically coupled constraint optimization (HCCO) problems are omnipresent, both in theoretical problems and in real-life scenarios; however, there is no clear definition to identify these problems. Numerous techniques have been developed for some typical HCCO problems, such as assembly job-shop scheduling problems (AJSSPs); however, these techniques are not universally applicable to all HCCO problems. In this paper, an abstract definition and common principles amongst different HCCO problems are first established. Next, based on the definitions and principles, a new optimization algorithm based on evolutionary computation is developed for HCCO. The new optimization algorithm has three key new features: a new initial solution generator, a level barrier-based crossover operator, and a level barrier-based mutation operator. In the initial solution generator, a partial solution is created in the first step that satisfies the lowest level hierarchically coupled constraint (HCC) and each consecutive step afterwards adds on to the partial solution to satisfy the next higher level of HCC. In the level barrier-based operators, the operations are only performed between genes satisfying the same level of HCCs to ensure feasibility of the new solutions. The developed optimization algorithm is used to solve a variety of AJSSPs and the results obtained using the proposed algorithm are compared to other methods used to solve AJSSPs.

Suggested Citation

  • Pan Zou & Manik Rajora & Steven Y. Liang, 2018. "A new algorithm based on evolutionary computation for hierarchically coupled constraint optimization: methodology and application to assembly job-shop scheduling," Journal of Scheduling, Springer, vol. 21(5), pages 545-563, October.
  • Handle: RePEc:spr:jsched:v:21:y:2018:i:5:d:10.1007_s10951-018-0572-2
    DOI: 10.1007/s10951-018-0572-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-018-0572-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-018-0572-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G.M. Komaki & Ehsan Teymourian & Vahid Kayvanfar, 2016. "Minimising makespan in the two-stage assembly hybrid flow shop scheduling problem using artificial immune systems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 963-983, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    2. Fan Yang & Roel Leus, 2021. "Scheduling hybrid flow shops with time windows," Journal of Heuristics, Springer, vol. 27(1), pages 133-158, April.
    3. Mingxing Li & Ray Y. Zhong & Ting Qu & George Q. Huang, 2022. "Spatial–temporal out-of-order execution for advanced planning and scheduling in cyber-physical factories," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1355-1372, June.
    4. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:21:y:2018:i:5:d:10.1007_s10951-018-0572-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.