IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v20y2017i4d10.1007_s10951-016-0474-0.html
   My bibliography  Save this article

Non-preemptive buffer management for latency sensitive packets

Author

Listed:
  • Moran Feldman

    (The Open University of Israel)

  • Joseph (Seffi) Naor

    (Technion)

Abstract

The delivery of latency sensitive packets is a crucial issue in real-time applications of communication networks. Such packets often have a firm deadline and a packet becomes useless if it arrives after its deadline. The deadline, however, applies only to the packet’s journey through the entire network; individual routers along the packet’s route face a more flexible deadline. We study policies for admitting latency sensitive packets at a router. Each packet is tagged with a value. A packet waiting at a router loses value over time as its probability of arriving at its destination on time decreases. The router is modeled as a non-preemptive queue, and its objective is to maximize the total value of the forwarded packets. When a router receives a packet, it must either accept it (and delay future packets), or reject it immediately. The best policy depends on the set of values that a packet can take. We consider three natural sets: an unrestricted model, a real-valued model, where any value over 1 is allowed, and an integral-valued model. For the unrestricted model, we prove that there is no constant competitive ratio algorithm. For the real-valued model, we give a randomized 4-competitive algorithm and a matching lower bound (up to low order terms). We also provide a deterministic lower bound of $$\phi ^3 - {\varepsilon }\approx 4.236$$ ϕ 3 - ε ≈ 4.236 , almost matching the previously known 4.24-competitive algorithm. For the integral-valued model, we describe a deterministic 4-competitive algorithm, and prove that this is tight even for randomized algorithms (up to low order terms).

Suggested Citation

  • Moran Feldman & Joseph (Seffi) Naor, 2017. "Non-preemptive buffer management for latency sensitive packets," Journal of Scheduling, Springer, vol. 20(4), pages 337-353, August.
  • Handle: RePEc:spr:jsched:v:20:y:2017:i:4:d:10.1007_s10951-016-0474-0
    DOI: 10.1007/s10951-016-0474-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-016-0474-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-016-0474-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iftah Gamzu & Danny Segev, 2019. "A polynomial-time approximation scheme for the airplane refueling problem," Journal of Scheduling, Springer, vol. 22(1), pages 119-135, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:20:y:2017:i:4:d:10.1007_s10951-016-0474-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.