IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v19y2016i4d10.1007_s10951-015-0458-5.html
   My bibliography  Save this article

Late acceptance hill-climbing for high school timetabling

Author

Listed:
  • George H. G. Fonseca

    (Federal University of Minas Gerais)

  • Haroldo G. Santos

    (Federal University of Ouro Preto)

  • Eduardo G. Carrano

    (Federal University of Minas Gerais)

Abstract

The application of the Late Acceptance Hill-Climbing (LAHC) to solve the High School Timetabling Problem is the subject of this manuscript. The original algorithm and two variants proposed here are tested jointly with other state-of-art methods to solve the instances proposed in the Third International Timetabling Competition. Following the same rules of the competition, the LAHC-based algorithms noticeably outperformed the winning methods. These results, and reports from the literature, suggest that the LAHC is a reliable method that can compete with the most employed local search algorithms.

Suggested Citation

  • George H. G. Fonseca & Haroldo G. Santos & Eduardo G. Carrano, 2016. "Late acceptance hill-climbing for high school timetabling," Journal of Scheduling, Springer, vol. 19(4), pages 453-465, August.
  • Handle: RePEc:spr:jsched:v:19:y:2016:i:4:d:10.1007_s10951-015-0458-5
    DOI: 10.1007/s10951-015-0458-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-015-0458-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-015-0458-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerhard Post & Jeffrey Kingston & Samad Ahmadi & Sophia Daskalaki & Christos Gogos & Jari Kyngas & Cimmo Nurmi & Nysret Musliu & Nelishia Pillay & Haroldo Santos & Andrea Schaerf, 2014. "XHSTT: an XML archive for high school timetabling problems in different countries," Annals of Operations Research, Springer, vol. 218(1), pages 295-301, July.
    2. Tomáš Müller, 2009. "ITC2007 solver description: a hybrid approach," Annals of Operations Research, Springer, vol. 172(1), pages 429-446, November.
    3. Haroldo Santos & Eduardo Uchoa & Luiz Ochi & Nelson Maculan, 2012. "Strong bounds with cut and column generation for class-teacher timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 399-412, April.
    4. Arnaldo Vieira Moura & Rafael Augusto Scaraficci, 2010. "A GRASP strategy for a more constrained School Timetabling Problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 7(2), pages 152-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saviniec, Landir & Santos, Maristela O. & Costa, Alysson M., 2018. "Parallel local search algorithms for high school timetabling problems," European Journal of Operational Research, Elsevier, vol. 265(1), pages 81-98.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fonseca, George H.G. & Santos, Haroldo G. & Carrano, Eduardo G. & Stidsen, Thomas J.R., 2017. "Integer programming techniques for educational timetabling," European Journal of Operational Research, Elsevier, vol. 262(1), pages 28-39.
    2. George Henrique Godim Fonseca & Haroldo Gambini Santos & Túlio Ângelo Machado Toffolo & Samuel Souza Brito & Marcone Jamilson Freitas Souza, 2016. "GOAL solver: a hybrid local search based solver for high school timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 77-97, April.
    3. Emir Demirović & Nysret Musliu, 2017. "Modeling high school timetabling with bitvectors," Annals of Operations Research, Springer, vol. 252(2), pages 215-238, May.
    4. Dorneles, Árton P. & de Araújo, Olinto C.B. & Buriol, Luciana S., 2017. "A column generation approach to high school timetabling modeled as a multicommodity flow problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 685-695.
    5. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    6. Lemos, Alexandre & Melo, Francisco S. & Monteiro, Pedro T. & Lynce, Inês, 2019. "Room usage optimization in timetabling: A case study at Universidade de Lisboa," Operations Research Perspectives, Elsevier, vol. 6(C).
    7. Vermuyten, Hendrik & Lemmens, Stef & Marques, Inês & Beliën, Jeroen, 2016. "Developing compact course timetables with optimized student flows," European Journal of Operational Research, Elsevier, vol. 251(2), pages 651-661.
    8. David Van Bulck & Dries Goossens & Jo¨rn Scho¨nberger & Mario Guajardo, 2020. "An Instance Data Repository for the Round-robin Sports Timetabling Problem," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 45(2), pages 184-200, May.
    9. Felipe Rosa-Rivera & Jose I. Nunez-Varela & Cesar A. Puente-Montejano & Sandra E. Nava-Muñoz, 2021. "Measuring the complexity of university timetabling instances," Journal of Scheduling, Springer, vol. 24(1), pages 103-121, February.
    10. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    11. R. A. Oude Vrielink & E. A. Jansen & E. W. Hans & J. Hillegersberg, 2019. "Practices in timetabling in higher education institutions: a systematic review," Annals of Operations Research, Springer, vol. 275(1), pages 145-160, April.
    12. Nelishia Pillay, 2014. "A survey of school timetabling research," Annals of Operations Research, Springer, vol. 218(1), pages 261-293, July.
    13. Saviniec, Landir & Santos, Maristela O. & Costa, Alysson M., 2018. "Parallel local search algorithms for high school timetabling problems," European Journal of Operational Research, Elsevier, vol. 265(1), pages 81-98.
    14. P. Solano Cutillas & D. Pérez-Perales & M. M. E. Alemany Díaz, 2022. "A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules," Operational Research, Springer, vol. 22(3), pages 2899-2942, July.
    15. Ahmed Kheiri & Ender Özcan & Andrew J. Parkes, 2016. "A stochastic local search algorithm with adaptive acceptance for high-school timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 135-151, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:19:y:2016:i:4:d:10.1007_s10951-015-0458-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.