IDEAS home Printed from https://ideas.repec.org/a/spr/jqecon/v4y2006i2d10.1007_bf03546445.html
   My bibliography  Save this article

Application of Stein-Rule Estimation to Linear Regression Models with Some Missing Observations

Author

Listed:
  • H. Toutenburg

    (Universität München)

  • V. K. Srivastava

    (University of Lucknow)

  • C. Heumann

    (Universität München)

Abstract

The problem of estimating the coefficients in a linear regression model is considered when some of the response values are missing. The conventional Yates procedure employing least squares predictions for missing values does not lead to any improvement over the least squares estimator using complete observations only. However, if we use Stein-rule predictions, it is demonstrated that some improvement can be achieved. An unbiased estimator of the mean squared error matrix of the proposed estimator of coefficient vector is also presented. Some work on the application of the proposed estimation procedure to real-world data sets involving some discrete variables in the set of explanatory variables is under way and will be reported in future.

Suggested Citation

  • H. Toutenburg & V. K. Srivastava & C. Heumann, 2006. "Application of Stein-Rule Estimation to Linear Regression Models with Some Missing Observations," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 4(2), pages 14-24, July.
  • Handle: RePEc:spr:jqecon:v:4:y:2006:i:2:d:10.1007_bf03546445
    DOI: 10.1007/BF03546445
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF03546445
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/BF03546445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carter, R.A.L. & Srivastava, M.S. & Srivastava, V.K. & Ullah, A., 1990. "Unbiased Estimation of the MSE Matrix of Stein-Rule Estimators, Confidence Ellipsoids, and Hypothesis Testing," Econometric Theory, Cambridge University Press, vol. 6(1), pages 63-74, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazimi, Camilla & Brownstone, David, 1999. "Bootstrap confidence bands for shrinkage estimators," Journal of Econometrics, Elsevier, vol. 90(1), pages 99-127, May.
    2. Boot, Tom, 2023. "Joint inference based on Stein-type averaging estimators in the linear regression model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1542-1563.
    3. Kubokawa, T. & Srivastava, M. S., 2002. "Estimating Risk and the Mean Squared Error Matrix in Stein Estimation," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 39-64, July.
    4. Chaturvedi, Anoop & Gupta, Suchita & Bhatti, M. Ishaq, 2012. "Confidence ellipsoids based on a general family of shrinkage estimators for a linear model with non-spherical disturbances," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 140-158, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jqecon:v:4:y:2006:i:2:d:10.1007_bf03546445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.