Abductive Inference and C. S. Peirce: 150 Years Later
Author
Abstract
Suggested Citation
DOI: 10.1007/s40953-022-00332-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Buansing, T.S. Tuang & Golan, Amos & Ullah, Aman, 2020.
"An information-theoretic approach for forecasting interval-valued SP500 daily returns,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 800-813.
- T.S. Tuang Buansing & Amos Golan & Aman Ullah, 2019. "Information-Theoretic Approach for Forecasting Interval-Valued SP500 Daily Returns," Working Papers 201922, University of California at Riverside, Department of Economics.
- Subhadeep & Mukhopadhyay, 2021. "A Maximum Entropy Copula Model for Mixed Data: Representation, Estimation, and Applications," Papers 2108.09438, arXiv.org, revised Aug 2022.
- George Box, 2001. "Statistics for discovery," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(3-4), pages 285-299.
- Lee Tae-Hwy & Mao Millie Yi & Ullah Aman, 2021.
"Maximum Entropy Analysis of Consumption-based Capital Asset Pricing Model and Volatility,"
Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 1-19, January.
- Tae-Hwy Lee & Millie Yi Mao & Aman Ullah, 2020. "Maximum Entropy Analysis of Consumption-based Capital Asset Pricing Model and Volatility," Working Papers 202015, University of California at Riverside, Department of Economics.
- Subhadeep Mukhopadhyay & Emanuel Parzen, 2020. "Nonparametric universal copula modeling," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(1), pages 77-94, January.
- Subhadeep Mukhopadhyay, 2022. "A maximum entropy copula model for mixed data: representation, estimation and applications," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 34(4), pages 1036-1062, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Subhadeep Mukhopadhyay, 2023. "Modelplasticity and abductive decision making," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 255-276, June.
- Subhadeep & Mukhopadhyay, 2022. "Modelplasticity and Abductive Decision Making," Papers 2203.03040, arXiv.org, revised Mar 2023.
- Deep Mukhopadhyay, 2021. "Abductive Inference and C. S. Peirce: 150 Years Later," Papers 2111.08054, arXiv.org, revised Feb 2023.
- Subhadeep & Mukhopadhyay, 2021. "A Maximum Entropy Copula Model for Mixed Data: Representation, Estimation, and Applications," Papers 2108.09438, arXiv.org, revised Aug 2022.
- Haowen Bao & Yongmiao Hong & Yuying Sun & Shouyang Wang, 2024. "Sparse Interval-valued Time Series Modeling with Machine Learning," Papers 2411.09452, arXiv.org.
- Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
- Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
- Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
- Sharma Mithun & Sharma Shilpi, 2021. "Critical Evaluation into the practical utility of the Design of Experiments," Engineering Management in Production and Services, Sciendo, vol. 13(3), pages 50-65, September.
- Mukhopadhyay, Subhadeep & Wang, Kaijun, 2023. "On The Problem of Relevance in Statistical Inference," Econometrics and Statistics, Elsevier, vol. 25(C), pages 93-109.
- Michael William Ashby & Oliver Bruce Linton, 2024. "Do Consumption-Based Asset Pricing Models Explain the Dynamics of Stock Market Returns?," JRFM, MDPI, vol. 17(2), pages 1-41, February.
- Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
More about this item
Keywords
Abductive inference machine; Artificial intelligence; Density sharpening; Informative component analysis; Problem of surprise; Laws of discovery; Self-corrective models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jqecon:v:21:y:2023:i:1:d:10.1007_s40953-022-00332-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.