IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i4d10.1007_s10959-024-01338-0.html
   My bibliography  Save this article

Explosion Rates for Continuous-State Branching Processes in a Lévy Environment

Author

Listed:
  • Natalia Cardona-Tobón

    (Georg-August-Universität Göttingen)

  • Juan Carlos Pardo

    (Centro de Investigación en Matemáticas)

Abstract

Here, we study the long-term behaviour of the non-explosion probability for continuous-state branching processes in a Lévy environment when the branching mechanism is given by the negative of the Laplace exponent of a subordinator. In order to do so, we study the law of this family of processes in the infinite mean case and provide necessary and sufficient conditions for the process to be conservative, i.e. that the process does not explode in finite time a.s. In addition, we establish precise rates for the non-explosion probabilities in the subcritical and critical regimes, first found by Palau et al. (ALEA Lat Am J Probab Math Stat 13(2):1235–1258, 2016) in the case when the branching mechanism is given by the negative of the Laplace exponent of a stable subordinator.

Suggested Citation

  • Natalia Cardona-Tobón & Juan Carlos Pardo, 2024. "Explosion Rates for Continuous-State Branching Processes in a Lévy Environment," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3395-3425, November.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01338-0
    DOI: 10.1007/s10959-024-01338-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01338-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01338-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hui He & Zenghu Li & Wei Xu, 2018. "Continuous-State Branching Processes in Lévy Random Environments," Journal of Theoretical Probability, Springer, vol. 31(4), pages 1952-1974, December.
    2. Li, Zenghu & Xu, Wei, 2018. "Asymptotic results for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 108-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Wei, 2023. "Asymptotics for exponential functionals of random walks," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 1-42.
    2. Shukai Chen & Rongjuan Fang & Xiangqi Zheng, 2023. "Wasserstein-Type Distances of Two-Type Continuous-State Branching Processes in Lévy Random Environments," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1572-1590, September.
    3. Barker, A. & Savov, M., 2021. "Bivariate Bernstein–gamma functions and moments of exponential functionals of subordinators," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 454-497.
    4. Grégoire Véchambre, 2022. "General Self-Similarity Properties for Markov Processes and Exponential Functionals of Lévy Processes," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2083-2144, December.
    5. Foucart, Clément & Vidmar, Matija, 2024. "Continuous-state branching processes with collisions: First passage times and duality," Stochastic Processes and their Applications, Elsevier, vol. 167(C).
    6. Ren, Yan-Xia & Xiong, Jie & Yang, Xu & Zhou, Xiaowen, 2022. "On the extinction-extinguishing dichotomy for a stochastic Lotka–Volterra type population dynamical system," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 50-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01338-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.