IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i3d10.1007_s10959-024-01339-z.html
   My bibliography  Save this article

An Analogue of the Klebanov Theorem for Locally Compact Abelian Groups

Author

Listed:
  • Margaryta Myronyuk

    (B. Verkin Institute for Low Temperature Physics and Engineering, The National Academy of Sciences of Ukraine
    Bielefeld University)

Abstract

L. Klebanov proved the following theorem. Let $$\xi _1, \dots , \xi _n$$ ξ 1 , ⋯ , ξ n be independent random variables. Consider linear forms $$L_1=a_1\xi _1+\cdots +a_n\xi _n,$$ L 1 = a 1 ξ 1 + ⋯ + a n ξ n , $$L_2=b_1\xi _1+\cdots +b_n\xi _n,$$ L 2 = b 1 ξ 1 + ⋯ + b n ξ n , $$L_3=c_1\xi _1+\cdots +c_n\xi _n,$$ L 3 = c 1 ξ 1 + ⋯ + c n ξ n , $$L_4=d_1\xi _1+\cdots +d_n\xi _n,$$ L 4 = d 1 ξ 1 + ⋯ + d n ξ n , where the coefficients $$a_j, b_j, c_j, d_j$$ a j , b j , c j , d j are real numbers. If the random vectors $$(L_1,L_2)$$ ( L 1 , L 2 ) and $$(L_3,L_4)$$ ( L 3 , L 4 ) are identically distributed, then all $$\xi _i$$ ξ i for which $$a_id_j-b_ic_j\ne 0$$ a i d j - b i c j ≠ 0 for all $$j=\overline{1,n}$$ j = 1 , n ¯ are Gaussian random variables. The present article is devoted to an analog of the Klebanov theorem in the case when random variables take values in a locally compact Abelian group and the coefficients of the linear forms are integers.

Suggested Citation

  • Margaryta Myronyuk, 2024. "An Analogue of the Klebanov Theorem for Locally Compact Abelian Groups," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2646-2664, September.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-024-01339-z
    DOI: 10.1007/s10959-024-01339-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01339-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01339-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Myronyuk, Margaryta, 2019. "Characterization of distributions of Q-independent random variables on locally compact Abelian groups," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 82-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Myronyuk, Margaryta, 2021. "Characterization theorems for Q-independent random variables with values in a Banach space," Statistics & Probability Letters, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-024-01339-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.