IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i2d10.1007_s10959-024-01332-6.html
   My bibliography  Save this article

Wigner- and Marchenko–Pastur-Type Limit Theorems for Jacobi Processes

Author

Listed:
  • Martin Auer

    (Technische Universität Dortmund)

  • Michael Voit

    (Technische Universität Dortmund)

  • Jeannette H. C. Woerner

    (Technische Universität Dortmund)

Abstract

We study Jacobi processes $$(X_{t})_{t\ge 0}$$ ( X t ) t ≥ 0 on $$[-1,1]^N$$ [ - 1 , 1 ] N and $$[1,\infty [^N$$ [ 1 , ∞ [ N which are motivated by the Heckman–Opdam theory and associated integrable particle systems. These processes depend on three positive parameters and degenerate in the freezing limit to solutions of deterministic dynamical systems. In the compact case, these models tend for $$t\rightarrow \infty $$ t → ∞ to the distributions of the $$\beta $$ β -Jacobi ensembles and, in the freezing case, to vectors consisting of ordered zeros of one-dimensional Jacobi polynomials. We derive almost sure analogues of Wigner’s semicircle and Marchenko–Pastur limit laws for $$N\rightarrow \infty $$ N → ∞ for the empirical distributions of the N particles on some local scale. We there allow for arbitrary initial conditions, which enter the limiting distributions via free convolutions. These results generalize corresponding stationary limit results in the compact case for $$\beta $$ β -Jacobi ensembles and, in the deterministic case, for the empirical distributions of the ordered zeros of Jacobi polynomials. The results are also related to free limit theorems for multivariate Bessel processes, $$\beta $$ β -Hermite and $$\beta $$ β -Laguerre ensembles, and the asymptotic empirical distributions of the zeros of Hermite and Laguerre polynomials for $$N\rightarrow \infty $$ N → ∞ .

Suggested Citation

  • Martin Auer & Michael Voit & Jeannette H. C. Woerner, 2024. "Wigner- and Marchenko–Pastur-Type Limit Theorems for Jacobi Processes," Journal of Theoretical Probability, Springer, vol. 37(2), pages 1674-1709, June.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-024-01332-6
    DOI: 10.1007/s10959-024-01332-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01332-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01332-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-024-01332-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.