IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v36y2023i1d10.1007_s10959-022-01163-3.html
   My bibliography  Save this article

The Limit Empirical Spectral Distribution of Gaussian Monic Complex Matrix Polynomials

Author

Listed:
  • Giovanni Barbarino

    (Aalto University)

  • Vanni Noferini

    (Aalto University)

Abstract

We define the empirical spectral distribution (ESD) of a random matrix polynomial with invertible leading coefficient, and we study it for complex $$n \times n$$ n × n Gaussian monic matrix polynomials of degree k. We obtain exact formulae for the almost sure limit of the ESD in two distinct scenarios: (1) $$n \rightarrow \infty $$ n → ∞ with k constant and (2) $$k \rightarrow \infty $$ k → ∞ with n constant. The main tool for our approach is the replacement principle by Tao, Vu and Krishnapur. Along the way, we also develop some auxiliary results of potential independent interest: We slightly extend a result by Bürgisser and Cucker on the tail bound for the norm of the pseudoinverse of a nonzero mean matrix, and we obtain several estimates on the singular values of certain structured random matrices.

Suggested Citation

  • Giovanni Barbarino & Vanni Noferini, 2023. "The Limit Empirical Spectral Distribution of Gaussian Monic Complex Matrix Polynomials," Journal of Theoretical Probability, Springer, vol. 36(1), pages 99-133, March.
  • Handle: RePEc:spr:jotpro:v:36:y:2023:i:1:d:10.1007_s10959-022-01163-3
    DOI: 10.1007/s10959-022-01163-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-022-01163-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-022-01163-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:36:y:2023:i:1:d:10.1007_s10959-022-01163-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.