IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v35y2022i2d10.1007_s10959-021-01078-5.html
   My bibliography  Save this article

An Ideal Class to Construct Solutions for Skew Brownian Motion Equations

Author

Listed:
  • Fulgence Eyi Obiang

    (Université des Sciences et Techniques de Masuku)

  • Octave Moutsinga

    (Université des Sciences et Techniques de Masuku)

  • Youssef Ouknine

    (Cadi Ayyad University
    Hassan II Academy of Sciences and Technologies
    Africa Business School, Mohammed VI Polytechnic)

Abstract

This paper contributes to the study of stochastic processes of the class $$(\Sigma )$$ ( Σ ) . First, we extend the notion of the above-mentioned class to càdlàg semi-martingales, whose finite variation part is considered càdlàg instead of continuous. Thus, we present some properties and propose a method to characterize such stochastic processes. Second, we investigate continuous processes of the class $$(\Sigma )$$ ( Σ ) . More precisely, we derive a series of new characterization results. In addition, we construct solutions for skew Brownian motion equations using continuous stochastic processes of the class $$(\Sigma )$$ ( Σ ) .

Suggested Citation

  • Fulgence Eyi Obiang & Octave Moutsinga & Youssef Ouknine, 2022. "An Ideal Class to Construct Solutions for Skew Brownian Motion Equations," Journal of Theoretical Probability, Springer, vol. 35(2), pages 894-916, June.
  • Handle: RePEc:spr:jotpro:v:35:y:2022:i:2:d:10.1007_s10959-021-01078-5
    DOI: 10.1007/s10959-021-01078-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-021-01078-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-021-01078-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikeghbali, Ashkan, 2006. "A class of remarkable submartingales," Stochastic Processes and their Applications, Elsevier, vol. 116(6), pages 917-938, June.
    2. Ashkan Nikeghbali, 2006. "Multiplicative Decompositions and Frequency of Vanishing of Nonnegative Submartingales," Journal of Theoretical Probability, Springer, vol. 19(4), pages 931-949, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fulgence Eyi-Obiang & Youssef Ouknine & Octave Moutsinga, 2017. "On the Study of Processes of $$\sum (H)$$ ∑ ( H ) and $$\sum _\mathrm{s}(H)$$ ∑ s ( H ) Classes," Journal of Theoretical Probability, Springer, vol. 30(1), pages 117-142, March.
    2. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, December.
    3. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    4. Najnudel, Joseph & Nikeghbali, Ashkan, 2012. "On some universal σ-finite measures related to a remarkable class of submartingales," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1582-1600.
    5. Ashkan Nikeghbali & Eckhard Platen, 2013. "A reading guide for last passage times with financial applications in view," Finance and Stochastics, Springer, vol. 17(3), pages 615-640, July.
    6. Pospisil, Libor & Vecer, Jan & Hadjiliadis, Olympia, 2009. "Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2563-2578, August.
    7. Sakrani Samia, 2021. "Time-Changed Local Martingales Under Signed Measures," Journal of Theoretical Probability, Springer, vol. 34(2), pages 644-659, June.
    8. Zhenyu Cui & Duy Nguyen, 2018. "Magnitude and Speed of Consecutive Market Crashes in a Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 117-135, March.
    9. Nikeghbali, Ashkan, 2007. "Non-stopping times and stopping theorems," Stochastic Processes and their Applications, Elsevier, vol. 117(4), pages 457-475, April.
    10. Libo Li, 2022. "Characterisation of Honest Times and Optional Semimartingales of Class- $$(\Sigma )$$ ( Σ )," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2145-2175, December.
    11. Oblój, Jan, 2007. "An explicit solution to the Skorokhod embedding problem for functionals of excursions of Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 117(4), pages 409-431, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:35:y:2022:i:2:d:10.1007_s10959-021-01078-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.