IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v35y2022i2d10.1007_s10959-020-01072-3.html
   My bibliography  Save this article

Large Deviation Properties of the Empirical Measure of a Metastable Small Noise Diffusion

Author

Listed:
  • Paul Dupuis

    (Brown University)

  • Guo-Jhen Wu

    (KTH Royal Institute of Technology)

Abstract

The aim of this paper is to develop tractable large deviation approximations for the empirical measure of a small noise diffusion. The starting point is the Freidlin–Wentzell theory, which shows how to approximate via a large deviation principle the invariant distribution of such a diffusion. The rate function of the invariant measure is formulated in terms of quasipotentials, quantities that measure the difficulty of a transition from the neighborhood of one metastable set to another. The theory provides an intuitive and useful approximation for the invariant measure, and along the way many useful related results (e.g., transition rates between metastable states) are also developed. With the specific goal of design of Monte Carlo schemes in mind, we prove large deviation limits for integrals with respect to the empirical measure, where the process is considered over a time interval whose length grows as the noise decreases to zero. In particular, we show how the first and second moments of these integrals can be expressed in terms of quasipotentials. When the dynamics of the process depend on parameters, these approximations can be used for algorithm design, and applications of this sort will appear elsewhere. The use of a small noise limit is well motivated, since in this limit good sampling of the state space becomes most challenging. The proof exploits a regenerative structure, and a number of new techniques are needed to turn large deviation estimates over a regenerative cycle into estimates for the empirical measure and its moments.

Suggested Citation

  • Paul Dupuis & Guo-Jhen Wu, 2022. "Large Deviation Properties of the Empirical Measure of a Metastable Small Noise Diffusion," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1049-1136, June.
  • Handle: RePEc:spr:jotpro:v:35:y:2022:i:2:d:10.1007_s10959-020-01072-3
    DOI: 10.1007/s10959-020-01072-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-020-01072-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-020-01072-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:35:y:2022:i:2:d:10.1007_s10959-020-01072-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.