IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v35y2022i1d10.1007_s10959-020-01047-4.html
   My bibliography  Save this article

Necessary and Sufficient Conditions for the Uniform Integrability of the Stochastic Exponential

Author

Listed:
  • B. Chikvinidze

    (Georgian-American University, Business school)

Abstract

We establish necessary and sufficient conditions for uniform integrability of the stochastic exponential $${{{\mathcal {E}}}}(M)$$ E ( M ) , where M is a continuous local martingale.

Suggested Citation

  • B. Chikvinidze, 2022. "Necessary and Sufficient Conditions for the Uniform Integrability of the Stochastic Exponential," Journal of Theoretical Probability, Springer, vol. 35(1), pages 282-294, March.
  • Handle: RePEc:spr:jotpro:v:35:y:2022:i:1:d:10.1007_s10959-020-01047-4
    DOI: 10.1007/s10959-020-01047-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-020-01047-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-020-01047-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruf, Johannes, 2013. "A new proof for the conditions of Novikov and Kazamaki," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 404-421.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.
    2. Hardy Hulley & Johannes Ruf, 2019. "Weak Tail Conditions for Local Martingales," Published Paper Series 2019-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    3. Černý, Aleš & Ruf, Johannes, 2023. "Simplified calculus for semimartingales: Multiplicative compensators and changes of measure," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 572-602.
    4. Sascha Desmettre, 2018. "Change of Measure in the Heston Model given a violated Feller Condition," Papers 1809.10955, arXiv.org, revised Oct 2019.
    5. Carole Bernard & Zhenyu Cui & Don McLeish, 2013. "On the martingale property in stochastic volatility models based on time-homogeneous diffusions," Papers 1310.0092, arXiv.org, revised Jul 2014.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:35:y:2022:i:1:d:10.1007_s10959-020-01047-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.