IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v34y2021i2d10.1007_s10959-020-01000-5.html
   My bibliography  Save this article

Products of Conditional Expectation Operators: Convergence and Divergence

Author

Listed:
  • Guolie Lan

    (Guangzhou University)

  • Ze-Chun Hu

    (Sichuan University)

  • Wei Sun

    (Concordia University)

Abstract

In this paper, we investigate the convergence of products of conditional expectation operators. We show that if $$(\Omega ,\mathcal {F},P)$$ ( Ω , F , P ) is a probability space that is not purely atomic, then divergent sequences of products of conditional expectation operators involving 3 or 4 sub- $$\sigma $$ σ -fields of $$\mathcal {F}$$ F can be constructed for a large class of random variables in $$L^2(\Omega ,\mathcal {F},P)$$ L 2 ( Ω , F , P ) . This settles in the negative a long-open conjecture. On the other hand, we show that if $$(\Omega ,\mathcal {F},P)$$ ( Ω , F , P ) is a purely atomic probability space, then products of conditional expectation operators involving any finite set of sub- $$\sigma $$ σ -fields of $$\mathcal {F}$$ F must converge for all random variables in $$L^1(\Omega ,\mathcal {F},P)$$ L 1 ( Ω , F , P ) .

Suggested Citation

  • Guolie Lan & Ze-Chun Hu & Wei Sun, 2021. "Products of Conditional Expectation Operators: Convergence and Divergence," Journal of Theoretical Probability, Springer, vol. 34(2), pages 1012-1028, June.
  • Handle: RePEc:spr:jotpro:v:34:y:2021:i:2:d:10.1007_s10959-020-01000-5
    DOI: 10.1007/s10959-020-01000-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-020-01000-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-020-01000-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:34:y:2021:i:2:d:10.1007_s10959-020-01000-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.