IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v34y2021i2d10.1007_s10959-020-00991-5.html
   My bibliography  Save this article

Subcritical Branching Processes in Random Environment with Immigration Stopped at Zero

Author

Listed:
  • Doudou Li

    (Beijing Normal University)

  • Vladimir Vatutin

    (Steklov Mathematical Institute)

  • Mei Zhang

    (Beijing Normal University)

Abstract

We consider the subcritical branching processes with immigration which evolve under the influence of a random environment and study the tail distribution of life periods of such processes defined as the length of the time interval between the moment when first invader (or invaders) came to an empty site until the moment when the site becomes empty again. We prove that the tail distribution decays with exponential rate. The main tools are change of measure and some conditional limit theorems for random walks.

Suggested Citation

  • Doudou Li & Vladimir Vatutin & Mei Zhang, 2021. "Subcritical Branching Processes in Random Environment with Immigration Stopped at Zero," Journal of Theoretical Probability, Springer, vol. 34(2), pages 874-896, June.
  • Handle: RePEc:spr:jotpro:v:34:y:2021:i:2:d:10.1007_s10959-020-00991-5
    DOI: 10.1007/s10959-020-00991-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-020-00991-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-020-00991-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. I. Afanasyev & C. Böinghoff & G. Kersting & V. A. Vatutin, 2012. "Limit Theorems for Weakly Subcritical Branching Processes in Random Environment," Journal of Theoretical Probability, Springer, vol. 25(3), pages 703-732, September.
    2. Vatutin, Vladimir & Zheng, Xinghua, 2012. "Subcritical branching processes in a random environment without the Cramer condition," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2594-2609.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui He & Zenghu Li & Wei Xu, 2018. "Continuous-State Branching Processes in Lévy Random Environments," Journal of Theoretical Probability, Springer, vol. 31(4), pages 1952-1974, December.
    2. Grama, Ion & Liu, Quansheng & Miqueu, Eric, 2017. "Berry–Esseen’s bound and Cramér’s large deviation expansion for a supercritical branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1255-1281.
    3. Xu, Wei, 2023. "Asymptotics for exponential functionals of random walks," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 1-42.
    4. Gao, Zhi-Qiang, 2021. "Exact convergence rate in the central limit theorem for a branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:34:y:2021:i:2:d:10.1007_s10959-020-00991-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.