IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v32y2019i2d10.1007_s10959-017-0798-5.html
   My bibliography  Save this article

On the Number of Eigenvalues of Modified Permutation Matrices in Mesoscopic Intervals

Author

Listed:
  • Valentin Bahier

    (Institut de Mathématiques de Toulouse)

Abstract

We are interested in two random matrix ensembles related to permutations: the ensemble of permutation matrices following Ewens’ distribution of a given parameter $$\theta >0$$ θ > 0 and its modification where entries equal to 1 in the matrices are replaced by independent random variables uniformly distributed on the unit circle. For the elements of each ensemble, we focus on the random numbers of eigenvalues lying in some specified arcs of the unit circle. We show that for a finite number of fixed arcs, the fluctuation of the numbers of eigenvalues belonging to them is asymptotically Gaussian. Moreover, for a single arc, we extend this result to the case where the length goes to zero sufficiently slowly when the size of the matrix goes to infinity. Finally, we investigate the behavior of the largest and smallest spacings between two distinct consecutive eigenvalues.

Suggested Citation

  • Valentin Bahier, 2019. "On the Number of Eigenvalues of Modified Permutation Matrices in Mesoscopic Intervals," Journal of Theoretical Probability, Springer, vol. 32(2), pages 974-1022, June.
  • Handle: RePEc:spr:jotpro:v:32:y:2019:i:2:d:10.1007_s10959-017-0798-5
    DOI: 10.1007/s10959-017-0798-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-017-0798-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-017-0798-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dang, K. & Zeindler, D., 2014. "The characteristic polynomial of a random permutation matrix at different points," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 411-439.
    2. Dirk Zeindler, 2013. "Central Limit Theorem for Multiplicative Class Functions on the Symmetric Group," Journal of Theoretical Probability, Springer, vol. 26(4), pages 968-996, December.
    3. Hambly, B. M. & Keevash, P. & O'Connell, N. & Stark, D., 2000. "The characteristic polynomial of a random permutation matrix," Stochastic Processes and their Applications, Elsevier, vol. 90(2), pages 335-346, December.
    4. Kelly Wieand, 2003. "Permutation Matrices, Wreath Products, and the Distribution of Eigenvalues," Journal of Theoretical Probability, Springer, vol. 16(3), pages 599-623, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentin Bahier & Joseph Najnudel, 2022. "On Smooth Mesoscopic Linear Statistics of the Eigenvalues of Random Permutation Matrices," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1640-1661, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahier, Valentin, 2019. "Characteristic polynomials of modified permutation matrices at microscopic scale," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4335-4365.
    2. Kelly Wieand, 2003. "Permutation Matrices, Wreath Products, and the Distribution of Eigenvalues," Journal of Theoretical Probability, Springer, vol. 16(3), pages 599-623, July.
    3. Dang, K. & Zeindler, D., 2014. "The characteristic polynomial of a random permutation matrix at different points," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 411-439.
    4. Dirk Zeindler, 2013. "Central Limit Theorem for Multiplicative Class Functions on the Symmetric Group," Journal of Theoretical Probability, Springer, vol. 26(4), pages 968-996, December.
    5. Valentin Bahier & Joseph Najnudel, 2022. "On Smooth Mesoscopic Linear Statistics of the Eigenvalues of Random Permutation Matrices," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1640-1661, September.
    6. Chafaï, Djalil, 2010. "The Dirichlet Markov Ensemble," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 555-567, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:32:y:2019:i:2:d:10.1007_s10959-017-0798-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.