IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v31y2018i1d10.1007_s10959-016-0718-0.html
   My bibliography  Save this article

Lamplighter Random Walks on Fractals

Author

Listed:
  • Takashi Kumagai

    (Kyoto University)

  • Chikara Nakamura

    (Kyoto University)

Abstract

We consider on-diagonal heat kernel estimates and the laws of the iterated logarithm for a switch-walk-switch random walk on a lamplighter graph under the condition that the random walk on the underlying graph enjoys sub-Gaussian heat kernel estimates.

Suggested Citation

  • Takashi Kumagai & Chikara Nakamura, 2018. "Lamplighter Random Walks on Fractals," Journal of Theoretical Probability, Springer, vol. 31(1), pages 68-92, March.
  • Handle: RePEc:spr:jotpro:v:31:y:2018:i:1:d:10.1007_s10959-016-0718-0
    DOI: 10.1007/s10959-016-0718-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-016-0718-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-016-0718-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, Owen Dafydd, 1996. "Transition probabilities for the simple random walk on the Sierpinski graph," Stochastic Processes and their Applications, Elsevier, vol. 61(1), pages 45-69, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuki Okamura, 2021. "Some Results for Range of Random Walk on Graph with Spectral Dimension Two," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1653-1688, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leorato, S. & Orsingher, E., 2009. "Branching on a Sierpinski graph," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 145-154, January.
    2. Grabner, Peter J. & Woess, Wolfgang, 1997. "Functional iterations and periodic oscillations for simple random walk on the Sierpinski graph," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 127-138, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:31:y:2018:i:1:d:10.1007_s10959-016-0718-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.