Stationary Increments Harmonizable Stable Fields: Upper Estimates on Path Behaviour
Author
Abstract
Suggested Citation
DOI: 10.1007/s10959-016-0698-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ayache, Antoine & Roueff, François & Xiao, Yimin, 2009. "Linear fractional stable sheets: Wavelet expansion and sample path properties," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1168-1197, April.
- Biermé, Hermine & Lacaux, Céline, 2009. "Hölder regularity for operator scaling stable random fields," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2222-2248, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Panigrahi, Snigdha & Roy, Parthanil & Xiao, Yimin, 2021. "Maximal moments and uniform modulus of continuity for stable random fields," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 92-124.
- Sönmez, Ercan, 2018. "The Hausdorff dimension of multivariate operator-self-similar Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 426-444.
- Ercan Sönmez, 2021. "Sample Path Properties of Generalized Random Sheets with Operator Scaling," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1279-1298, September.
- Li, Ming & Zhang, Peidong & Leng, Jianxing, 2016. "Improving autocorrelation regression for the Hurst parameter estimation of long-range dependent time series based on golden section search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 189-199.
- Dozzi, Marco & Shevchenko, Georgiy, 2011. "Real harmonizable multifractional stable process and its local properties," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1509-1523, July.
- Kremer, D. & Scheffler, H.-P., 2019. "Operator-stable and operator-self-similar random fields," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4082-4107.
- Biermé, Hermine & Lacaux, Céline & Scheffler, Hans-Peter, 2011. "Multi-operator scaling random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2642-2677, November.
- Li, Ming & Li, Jia-Yue, 2017. "Generalized Cauchy model of sea level fluctuations with long-range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 309-335.
- Ayache, Antoine & Xiao, Yimin, 2016. "Harmonizable fractional stable fields: Local nondeterminism and joint continuity of the local times," Stochastic Processes and their Applications, Elsevier, vol. 126(1), pages 171-185.
- Hamonier, Julien, 2015. "Linear Multifractional Stable Motion: Representation via Haar basis," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 1127-1147.
- Didier, Gustavo & Meerschaert, Mark M. & Pipiras, Vladas, 2018. "Domain and range symmetries of operator fractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 39-78.
- Neuman, Eyal, 2014. "The multifractal nature of Volterra–Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 3121-3145.
- Li, Ming, 2017. "Record length requirement of long-range dependent teletraffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 164-187.
- Li, Ming, 2020. "Multi-fractional generalized Cauchy process and its application to teletraffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
- Li, Yuqiang & Xiao, Yimin, 2011. "Multivariate operator-self-similar random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1178-1200, June.
- Ayache, Antoine, 2020. "Lower bound for local oscillations of Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4593-4607.
More about this item
Keywords
Heavy-tailed probability distributions; Directional Hölder regularity; Rectangular increments; Wavelet series representation; Law of the iterated logarithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:30:y:2017:i:4:d:10.1007_s10959-016-0698-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.