IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v30y2017i1d10.1007_s10959-015-0647-3.html
   My bibliography  Save this article

Maps Preserving Moment Sequences

Author

Listed:
  • Javier Cárcamo

    (Universidad Autónoma de Madrid)

Abstract

For any sequence s of real numbers, we consider the class $$\mathcal {L}$$ L of maps (from $$\mathbb {R}^{\mathbb {N}_0}$$ R N 0 to $$\mathbb {R}^{\mathbb {N}_0}$$ R N 0 ) that linearly combine a finite or infinite number of elements of s to obtain the new values of the transformed sequence. We characterize those maps in $$\mathcal {L}$$ L that transform moment sequences into moment sequences in terms of the existence of a stochastic process fulfilling appropriate requirements. Then, well-known stochastic processes are used to construct significant examples of such preserving mappings. As application, we also show that some celebrated numerical sequences (including several important combinatorial sequences) are actually transformed moment sequences.

Suggested Citation

  • Javier Cárcamo, 2017. "Maps Preserving Moment Sequences," Journal of Theoretical Probability, Springer, vol. 30(1), pages 212-232, March.
  • Handle: RePEc:spr:jotpro:v:30:y:2017:i:1:d:10.1007_s10959-015-0647-3
    DOI: 10.1007/s10959-015-0647-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-015-0647-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-015-0647-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Berg, 2005. "On Powers of Stieltjes Moment Sequences, I," Journal of Theoretical Probability, Springer, vol. 18(4), pages 871-889, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arista, Jonas & Rivero, Víctor, 2023. "Implicit renewal theory for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 262-287.
    2. Gwo Dong Lin & Jordan Stoyanov, 2015. "Moment Determinacy of Powers and Products of Nonnegative Random Variables," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1337-1353, December.
    3. P. Patie & A. Vaidyanathan, 2022. "Non‐classical Tauberian and Abelian type criteria for the moment problem," Mathematische Nachrichten, Wiley Blackwell, vol. 295(5), pages 970-990, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:30:y:2017:i:1:d:10.1007_s10959-015-0647-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.