IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v30y2017i1d10.1007_s10959-015-0636-6.html
   My bibliography  Save this article

Convergence in Law for the Branching Random Walk Seen from Its Tip

Author

Listed:
  • Thomas Madaule

    (Université Paris XIII)

Abstract

Consider a critical branching random walk on the real line. In a recent paper, Aïdékon (2011) developed a powerful method to obtain the convergence in law of its minimum after a log-factor translation. By an adaptation of this method, we show that the point process formed by the branching random walk seen from the minimum converges in law to a decorated Poisson point process. This result, confirming a conjecture of Brunet and Derrida (J Stat Phys 143:420–446, 2011), can be viewed as a discrete analog of the corresponding results for the branching Brownian motion, previously established by Arguin et al. (2010, 2011) and Aïdékon et al. (2011).

Suggested Citation

  • Thomas Madaule, 2017. "Convergence in Law for the Branching Random Walk Seen from Its Tip," Journal of Theoretical Probability, Springer, vol. 30(1), pages 27-63, March.
  • Handle: RePEc:spr:jotpro:v:30:y:2017:i:1:d:10.1007_s10959-015-0636-6
    DOI: 10.1007/s10959-015-0636-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-015-0636-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-015-0636-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan-Xia Ren & Ting Yang, 2024. "Limiting Distributions for a Class of Super-Brownian Motions with Spatially Dependent Branching Mechanisms," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2457-2507, September.
    2. Bandyopadhyay, Antar & Ghosh, Partha Pratim, 2023. "Right-most position of a last progeny modified time inhomogeneous branching random walk," Statistics & Probability Letters, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:30:y:2017:i:1:d:10.1007_s10959-015-0636-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.