IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v29y2016i4d10.1007_s10959-015-0612-1.html
   My bibliography  Save this article

Strong Stationary Duality for Diffusion Processes

Author

Listed:
  • James Allen Fill

    (The Johns Hopkins University)

  • Vince Lyzinski

    (The Johns Hopkins University Human Language Technology Center of Excellence)

Abstract

We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well-chosen sequence of approximating birth-and-death Markov chains, allowing for simultaneous numerical simulations of our primal and dual diffusion processes. Lastly, we show how our new definition of diffusion duality allows the spectral theory of cutoff phenomena to extend naturally from birth-and-death Markov chains to the present diffusion context.

Suggested Citation

  • James Allen Fill & Vince Lyzinski, 2016. "Strong Stationary Duality for Diffusion Processes," Journal of Theoretical Probability, Springer, vol. 29(4), pages 1298-1338, December.
  • Handle: RePEc:spr:jotpro:v:29:y:2016:i:4:d:10.1007_s10959-015-0612-1
    DOI: 10.1007/s10959-015-0612-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-015-0612-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-015-0612-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Persi Diaconis & Laurent Miclo, 2009. "On Times to Quasi-stationarity for Birth and Death Processes," Journal of Theoretical Probability, Springer, vol. 22(3), pages 558-586, September.
    2. James Allen Fill, 2009. "The Passage Time Distribution for a Birth-and-Death Chain: Strong Stationary Duality Gives a First Stochastic Proof," Journal of Theoretical Probability, Springer, vol. 22(3), pages 543-557, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Allen Fill, 2009. "On Hitting Times and Fastest Strong Stationary Times for Skip-Free and More General Chains," Journal of Theoretical Probability, Springer, vol. 22(3), pages 587-600, September.
    2. Yu Gong & Yong-Hua Mao & Chi Zhang, 2012. "Hitting Time Distributions for Denumerable Birth and Death Processes," Journal of Theoretical Probability, Springer, vol. 25(4), pages 950-980, December.
    3. James Allen Fill & Vince Lyzinski, 2014. "Hitting Times and Interlacing Eigenvalues: A Stochastic Approach Using Intertwinings," Journal of Theoretical Probability, Springer, vol. 27(3), pages 954-981, September.
    4. Miclo, Laurent & Arnaudon, Marc & Coulibaly-Pasquier, Koléhè, 2024. "On Markov intertwining relations and primal conditioning," TSE Working Papers 24-1509, Toulouse School of Economics (TSE).
    5. Marc Arnaudon & Koléhè Coulibaly-Pasquier & Laurent Miclo, 2024. "On Markov Intertwining Relations and Primal Conditioning," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2425-2456, September.
    6. Erik A. Doorn, 2017. "An Orthogonal-Polynomial Approach to First-Hitting Times of Birth–Death Processes," Journal of Theoretical Probability, Springer, vol. 30(2), pages 594-607, June.
    7. James Allen Fill, 2009. "The Passage Time Distribution for a Birth-and-Death Chain: Strong Stationary Duality Gives a First Stochastic Proof," Journal of Theoretical Probability, Springer, vol. 22(3), pages 543-557, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:29:y:2016:i:4:d:10.1007_s10959-015-0612-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.