IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v29y2016i3d10.1007_s10959-015-0611-2.html
   My bibliography  Save this article

Uniquely Determined Uniform Probability on the Natural Numbers

Author

Listed:
  • Timber Kerkvliet

    (VU University)

  • Ronald Meester

    (VU University)

Abstract

In this paper, we address the problem of constructing a uniform probability measure on $${\mathbb {N}}$$ N . Of course, this is not possible within the bounds of the Kolmogorov axioms, and we have to violate at least one axiom. We define a probability measure as a finitely additive measure assigning probability 1 to the whole space, on a domain which is closed under complements and finite disjoint unions. We introduce and motivate a notion of uniformity which we call weak thinnability, which is strictly stronger than extension of natural density. We construct a weakly thinnable probability measure, and we show that on its domain, which contains sets without natural density, probability is uniquely determined by weak thinnability. In this sense, we can assign uniform probabilities in a canonical way. We generalize this result to uniform probability measures on other metric spaces, including $${\mathbb {R}}^n$$ R n .

Suggested Citation

  • Timber Kerkvliet & Ronald Meester, 2016. "Uniquely Determined Uniform Probability on the Natural Numbers," Journal of Theoretical Probability, Springer, vol. 29(3), pages 797-825, September.
  • Handle: RePEc:spr:jotpro:v:29:y:2016:i:3:d:10.1007_s10959-015-0611-2
    DOI: 10.1007/s10959-015-0611-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-015-0611-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-015-0611-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oliver Schirokauer & Joseph B. Kadane, 2007. "Uniform Distributions on the Natural Numbers," Journal of Theoretical Probability, Springer, vol. 20(3), pages 429-441, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryoichi Kunisada, 2022. "On the Additive Property of Finitely Additive Measures," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1782-1794, September.
    2. Efe A. Ok & Andrei Savochkin, 2022. "Believing in forecasts, uncertainty, and rational expectations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 74(3), pages 947-971, October.
    3. János Flesch & Dries Vermeulen & Anna Zseleva, 2024. "Finitely additive behavioral strategies: when do they induce an unambiguous expected payoff?," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 695-723, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:29:y:2016:i:3:d:10.1007_s10959-015-0611-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.