IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v29y2016i1d10.1007_s10959-014-0563-y.html
   My bibliography  Save this article

A Maxtrimmed St. Petersburg Game

Author

Listed:
  • Allan Gut

    (Uppsala University)

  • Anders Martin-Löf

    (Stockholm University)

Abstract

Let $$S_n$$ S n , $$n\ge 1$$ n ≥ 1 , describe the successive sums of the payoffs in the classical St. Petersburg game. The celebrated Feller weak law states that $$\frac{S_n}{n\log _2 n}\mathop {\rightarrow }\limits ^{p}1$$ S n n log 2 n → p 1 as $$n\rightarrow \infty $$ n → ∞ . It is also known that almost sure convergence fails. However, Csörgő and Simons (Stat Probab Lett 26:65–73, 1996) have shown that almost sure convergence holds for trimmed sums, that is, for $$S_n-\max _{1\le k\le n}X_k$$ S n - max 1 ≤ k ≤ n X k . Since our actual distribution is discrete there may be ties. Our main focus in this paper is on the “maxtrimmed sum”, that is, the sum trimmed by the random number of observations that are equal to the largest one. We prove an analog of Martin-Löf’s (J Appl Probab 22:634–643, 1985) distributional limit theorem for maxtrimmed sums, but also for the simply trimmed ones, as well as for the “total maximum”. In a final section, we interpret these findings in terms of sums of (truncated) Poisson random variables.

Suggested Citation

  • Allan Gut & Anders Martin-Löf, 2016. "A Maxtrimmed St. Petersburg Game," Journal of Theoretical Probability, Springer, vol. 29(1), pages 277-291, March.
  • Handle: RePEc:spr:jotpro:v:29:y:2016:i:1:d:10.1007_s10959-014-0563-y
    DOI: 10.1007/s10959-014-0563-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-014-0563-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-014-0563-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Csörgo, Sándor & Simons, Gordon, 1996. "A strong law of large numbers for trimmed sums, with applications to generalized St. Petersburg games," Statistics & Probability Letters, Elsevier, vol. 26(1), pages 65-73, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. István Berkes & László Györfi & Péter Kevei, 2017. "Tail Probabilities of St. Petersburg Sums, Trimmed Sums, and Their Limit," Journal of Theoretical Probability, Springer, vol. 30(3), pages 1104-1129, September.
    2. Péter Kevei & Dalia Terhesiu, 2020. "Darling–Kac Theorem for Renewal Shifts in the Absence of Regular Variation," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2027-2060, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. István Berkes & László Györfi & Péter Kevei, 2017. "Tail Probabilities of St. Petersburg Sums, Trimmed Sums, and Their Limit," Journal of Theoretical Probability, Springer, vol. 30(3), pages 1104-1129, September.
    2. David M. Mason, 2006. "Cluster Sets of Self-Normalized Sums," Journal of Theoretical Probability, Springer, vol. 19(4), pages 911-930, December.
    3. Csörgo, Sándor & Simons, Gordon, 2007. "St. Petersburg games with the largest gains withheld," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1185-1189, July.
    4. Alina Bazarova & István Berkes & Lajos Horváth, 2016. "On the Extremal Theory of Continued Fractions," Journal of Theoretical Probability, Springer, vol. 29(1), pages 248-266, March.
    5. Gut, Allan & Martin-Löf, Anders, 2015. "Extreme-trimmed St. Petersburg games," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 341-345.
    6. Vu T. N. Anh & Nguyen T. T. Hien & Le V. Thanh & Vo T. H. Van, 2021. "The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences," Journal of Theoretical Probability, Springer, vol. 34(1), pages 331-348, March.
    7. Kevei, Péter, 2007. "Generalized n-Paul paradox," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1043-1049, June.
    8. Marc Kesseböhmer & Tanja Schindler, 2019. "Strong Laws of Large Numbers for Intermediately Trimmed Sums of i.i.d. Random Variables with Infinite Mean," Journal of Theoretical Probability, Springer, vol. 32(2), pages 702-720, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:29:y:2016:i:1:d:10.1007_s10959-014-0563-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.