IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v23y2010i4d10.1007_s10959-009-0227-5.html
   My bibliography  Save this article

Survival of Branching Random Walks in Random Environment

Author

Listed:
  • Nina Gantert

    (CeNos Center for Nonlinear Science and Institut für Mathematische Statistik)

  • Sebastian Müller

    (Technische Universität Graz)

  • Serguei Popov

    (University of Campinas—UNICAMP)

  • Marina Vachkovskaia

    (University of Campinas—UNICAMP)

Abstract

We study survival of nearest-neighbor branching random walks in random environment (BRWRE) on ℤ. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and strong local survival regimes coincide for BRWRE and that they can be characterized with the spectral radius of the first moment matrix of the process. These results are generalizations of the classification of BRWRE in recurrent and transient regimes. Our main result is a characterization of global survival that is given in terms of Lyapunov exponents of an infinite product of i.i.d. 2×2 random matrices.

Suggested Citation

  • Nina Gantert & Sebastian Müller & Serguei Popov & Marina Vachkovskaia, 2010. "Survival of Branching Random Walks in Random Environment," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1002-1014, December.
  • Handle: RePEc:spr:jotpro:v:23:y:2010:i:4:d:10.1007_s10959-009-0227-5
    DOI: 10.1007/s10959-009-0227-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-009-0227-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-009-0227-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makoto Nakashima, 2013. "Minimal Position of Branching Random Walks in Random Environment," Journal of Theoretical Probability, Springer, vol. 26(4), pages 1181-1217, December.
    2. Onur Gün & Wolfgang König & Ozren Sekulović, 2015. "Moment Asymptotics for Multitype Branching Random Walks in Random Environment," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1726-1742, December.
    3. Vincent Bansaye, 2019. "Ancestral Lineages and Limit Theorems for Branching Markov Chains in Varying Environment," Journal of Theoretical Probability, Springer, vol. 32(1), pages 249-281, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:23:y:2010:i:4:d:10.1007_s10959-009-0227-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.