IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v20y2007i2d10.1007_s10959-007-0064-3.html
   My bibliography  Save this article

Graph-Theoretic Approach to Stochastic Integrals with Clifford Algebras

Author

Listed:
  • George Stacey Staples

    (Southern Illinois University Edwardsville)

Abstract

Given a fixed probability space (Ω,ℱ,ℙ) and m≥1, let X(t) be an L2(Ω) process satisfying necessary regularity conditions for existence of the mth iterated stochastic integral. For real-valued processes, these existence conditions are known from the work of D. Engel. Engel’s work is extended here to L2(Ω) processes defined on Clifford algebras of arbitrary signature (p,q), which reduce to the real case when p=q=0. These include as special cases processes on the complex numbers, quaternion algebra, finite fermion algebras, fermion Fock spaces, space-time algebra, the algebra of physical space, and the hypercube. Next, a graph-theoretic approach to stochastic integrals is developed in which the mth iterated stochastic integral corresponds to the limit in mean of a collection of weighted closed m-step walks on a growing sequence of graphs. Combinatorial properties of the Clifford geometric product are then used to create adjacency matrices for these graphs in which the appropriate weighted walks are recovered naturally from traces of matrix powers. Given real-valued L2(Ω) processes, Hermite and Poisson-Charlier polynomials are recovered in this manner.

Suggested Citation

  • George Stacey Staples, 2007. "Graph-Theoretic Approach to Stochastic Integrals with Clifford Algebras," Journal of Theoretical Probability, Springer, vol. 20(2), pages 257-274, June.
  • Handle: RePEc:spr:jotpro:v:20:y:2007:i:2:d:10.1007_s10959-007-0064-3
    DOI: 10.1007/s10959-007-0064-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-007-0064-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-007-0064-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:20:y:2007:i:2:d:10.1007_s10959-007-0064-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.