IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v18y2005i3d10.1007_s10959-005-3517-6.html
   My bibliography  Save this article

A Change-of-Variable Formula with Local Time on Curves

Author

Listed:
  • Goran Peskir

    (Danish National Research Foundation
    University of Aarhus)

Abstract

Let $$X = (X_t)_{t \geq 0}$$ be a continuous semimartingale and let $$b: \mathbb{R}_+ \rightarrow \mathbb{R}$$ be a continuous function of bounded variation. Setting $$C = \{(t, x) \in \mathbb{R} + \times \mathbb{R} | x b(t)\}$$ suppose that a continuous function $$F: \mathbb{R}_+ \times \mathbb{R} \rightarrow \mathbb{R}$$ is given such that F is C1,2 on $$\bar{C}$$ and F is $$C^{1,2}$$ on $$\bar{D}$$ . Then the following change-of-variable formula holds: $$\eqalign{ F(t,X_t) = F(0,X_0)+\int_0^{t} {1 \over 2} (F_t(s, X_s+) + F_t(s,X_s-)) ds\cr + \int_0^t {1 \over 2} (F_x(s,X_s+) + F_x(s,X_s-))dX_s\cr + {1 \over 2} \int_0^t F_{xx} (s,X_s)I (X_s \neq b(s)) d \langle X, X \rangle_s\cr + {1 \over 2} \int_0^t (F_x(s,X_s+)-F_x(s,X_s-)) I(X_s = b(s)) d\ell_{s}^{b} (X),\cr} $$ where $$\ell_{s}^{b}(X)$$ is the local time of X at the curve b given by $$\ell_{s}^{b}(X) = \mathbb{P} - \lim_{\varepsilon \downarrow 0} {1 \over 2 \varepsilon} \int_0^s I(b(r)- \varepsilon

Suggested Citation

  • Goran Peskir, 2005. "A Change-of-Variable Formula with Local Time on Curves," Journal of Theoretical Probability, Springer, vol. 18(3), pages 499-535, July.
  • Handle: RePEc:spr:jotpro:v:18:y:2005:i:3:d:10.1007_s10959-005-3517-6
    DOI: 10.1007/s10959-005-3517-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-005-3517-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-005-3517-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Basei & Giorgio Ferrari & Neofytos Rodosthenous, 2023. "Uncertainty over Uncertainty in Environmental Policy Adoption: Bayesian Learning of Unpredictable Socioeconomic Costs," Papers 2304.10344, arXiv.org, revised Feb 2024.
    2. Buonaguidi, B., 2023. "An optimal sequential procedure for determining the drift of a Brownian motion among three values," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 320-349.
    3. Tiziano De Angelis & Alessandro Milazzo & Gabriele Stabile, 2024. "On variable annuities with surrender charges," Papers 2405.02115, arXiv.org.
    4. Azze, A. & D’Auria, B. & García-Portugués, E., 2024. "Optimal stopping of an Ornstein–Uhlenbeck bridge," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    5. Johnson, P. & Pedersen, J.L. & Peskir, G. & Zucca, C., 2022. "Detecting the presence of a random drift in Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1068-1090.
    6. Glover, Kristoffer, 2022. "Optimally stopping a Brownian bridge with an unknown pinning time: A Bayesian approach," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 919-937.
    7. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal exercise of American options under time-dependent Ornstein-Uhlenbeck processes," Papers 2211.04095, arXiv.org, revised Jun 2024.
    8. Belomestny, Denis & Gapeev, Pavel V., 2006. "An iteration procedure for solving integral equations related to optimal stopping problems," SFB 649 Discussion Papers 2006-043, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Basei, Matteo & Ferrari, Giorgio & Rodosthenous, Neofytos, 2023. "Uncertainty over Uncertainty in Environmental Policy Adoption: Bayesian Learning of Unpredictable Socioeconomic Costs," Center for Mathematical Economics Working Papers 677, Center for Mathematical Economics, Bielefeld University.
    10. Basei, Matteo & Ferrari, Giorgio & Rodosthenous, Neofytos, 2024. "Uncertainty over uncertainty in environmental policy adoption: Bayesian learning of unpredictable socioeconomic costs," Journal of Economic Dynamics and Control, Elsevier, vol. 161(C).
    11. Bruno Buonaguidi, 2023. "Finite Horizon Sequential Detection with Exponential Penalty for the Delay," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 224-238, July.
    12. Cai, Cheng & De Angelis, Tiziano, 2023. "A change of variable formula with applications to multi-dimensional optimal stopping problems," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 33-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:18:y:2005:i:3:d:10.1007_s10959-005-3517-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.