IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v15y2002i1d10.1023_a1013899603656.html
   My bibliography  Save this article

Estimation of the Density of Hypoelliptic Diffusion Processes with Application to an Extended Itô's Formula

Author

Listed:
  • Xavier Bardina

    (Universitat Autònoma de Barcelona)

  • Maria Jolis

    (Universitat Autònoma de Barcelona)

Abstract

We prove a uniform bound for the density, p t (x), of the solution at time t∈(0, 1] of a 1-dimensional stochastic differential equation, under hypoellipticity conditions. A similar bound is obtained for an expression involving the distributional derivative (with respect to x) of p t (x). These results are applied to extend the Itô formula to the composition of a function (satisfying slight regularity conditions) with a hypoelliptic diffusion process in the spirit of the work of Föllmer et al. (5)

Suggested Citation

  • Xavier Bardina & Maria Jolis, 2002. "Estimation of the Density of Hypoelliptic Diffusion Processes with Application to an Extended Itô's Formula," Journal of Theoretical Probability, Springer, vol. 15(1), pages 223-247, January.
  • Handle: RePEc:spr:jotpro:v:15:y:2002:i:1:d:10.1023_a:1013899603656
    DOI: 10.1023/A:1013899603656
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1013899603656
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1013899603656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rozkosz, Andrzej, 1996. "Stochastic representation of diffusions corresponding to divergence form operators," Stochastic Processes and their Applications, Elsevier, vol. 63(1), pages 11-33, October.
    2. María Emilia Caballero & Begoña Fernández & David Nualart, 1998. "Estimation of Densities and Applications," Journal of Theoretical Probability, Springer, vol. 11(3), pages 831-851, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bardina, Xavier & Jolis, Maria, 1997. "An extension of Ito's formula for elliptic diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 83-109, July.
    2. Stoica, I. L., 2003. "A probabilistic interpretation of the divergence and BSDE's," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 31-55, January.
    3. Lejay, Antoine, 2002. "BSDE driven by Dirichlet process and semi-linear parabolic PDE. Application to homogenization," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 1-39, January.
    4. Tomasz Klimsiak, 2013. "On Time-Dependent Functionals of Diffusions Corresponding to Divergence Form Operators," Journal of Theoretical Probability, Springer, vol. 26(2), pages 437-473, June.
    5. Kuzgun, Sefika & Nualart, David, 2022. "Convergence of densities of spatial averages of stochastic heat equation," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 68-100.
    6. Moret, S. & Nualart, D., 2001. "Generalization of Itô's formula for smooth nondegenerate martingales," Stochastic Processes and their Applications, Elsevier, vol. 91(1), pages 115-149, January.
    7. Lejay, Antoine, 2004. "A probabilistic representation of the solution of some quasi-linear PDE with a divergence form operator. Application to existence of weak solutions of FBSDE," Stochastic Processes and their Applications, Elsevier, vol. 110(1), pages 145-176, March.
    8. Cheng Cai & Tiziano De Angelis, 2021. "A change of variable formula with applications to multi-dimensional optimal stopping problems," Papers 2104.05835, arXiv.org, revised Jul 2023.
    9. Cai, Cheng & De Angelis, Tiziano, 2023. "A change of variable formula with applications to multi-dimensional optimal stopping problems," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 33-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:15:y:2002:i:1:d:10.1023_a:1013899603656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.