IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v14y2001i4d10.1023_a1017576903851.html
   My bibliography  Save this article

Extreme Values and the Multivariate Compact Law of the Iterated Logarithm

Author

Listed:
  • Steven J. Sepanski

    (Saginaw Valley State University)

Abstract

For a sequence of independent identically distributed Euclidean random vectors, we prove a compact Law of the iterated logarithm when finitely many maximal terms are omitted from the partial sum. With probability one, the limiting cluster set of the appropriately operator normed partial sums is the closed unit Euclidean ball. The result is proved under the hypotheses that the random vectors belong to the Generalized Domain of Attraction of the multivariate Gaussian law and satisfy a mild integrability condition. The integrability condition characterizes how many maximal terms must be omitted from the partial sum sequence.

Suggested Citation

  • Steven J. Sepanski, 2001. "Extreme Values and the Multivariate Compact Law of the Iterated Logarithm," Journal of Theoretical Probability, Springer, vol. 14(4), pages 989-1018, October.
  • Handle: RePEc:spr:jotpro:v:14:y:2001:i:4:d:10.1023_a:1017576903851
    DOI: 10.1023/A:1017576903851
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1017576903851
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1017576903851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven J. Sepanski, 1999. "A Compact Law of the Iterated Logarithm for Random Vectors in the Generalized Domain of Attraction of the Multivariate Gaussian Law," Journal of Theoretical Probability, Springer, vol. 12(3), pages 757-778, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:14:y:2001:i:4:d:10.1023_a:1017576903851. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.