IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v14y2001i1d10.1023_a1007833401562.html
   My bibliography  Save this article

Small Deviations for Some Multi-Parameter Gaussian Processes

Author

Listed:
  • David M. Mason

    (University of Delaware)

  • Zhan Shi

    (Université Paris VI)

Abstract

We prove some general lower bounds for the probability that a multi-parameter Gaussian process has very small values. These results, when applied to a certain class of fractional Brownian sheets, yield the exact rate for their so-called small ball probability. We show by example how to use such results to compute the Hausdorff dimension of some exceptional sets determined by maximal increments.

Suggested Citation

  • David M. Mason & Zhan Shi, 2001. "Small Deviations for Some Multi-Parameter Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 14(1), pages 213-239, January.
  • Handle: RePEc:spr:jotpro:v:14:y:2001:i:1:d:10.1023_a:1007833401562
    DOI: 10.1023/A:1007833401562
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1007833401562
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1007833401562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Dunker, 2000. "Estimates for the Small Ball Probabilities of the Fractional Brownian Sheet," Journal of Theoretical Probability, Springer, vol. 13(2), pages 357-382, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Dereich & F. Fehringer & A. Matoussi & M. Scheutzow, 2003. "On the Link Between Small Ball Probabilities and the Quantization Problem for Gaussian Measures on Banach Spaces," Journal of Theoretical Probability, Springer, vol. 16(1), pages 249-265, January.
    2. Eduard Belinsky & Werner Linde, 2002. "Small Ball Probabilities of Fractional Brownian Sheets via Fractional Integration Operators," Journal of Theoretical Probability, Springer, vol. 15(3), pages 589-612, July.
    3. Alexandre Richard, 2017. "Some Singular Sample Path Properties of a Multiparameter Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 30(4), pages 1285-1309, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduard Belinsky & Werner Linde, 2002. "Small Ball Probabilities of Fractional Brownian Sheets via Fractional Integration Operators," Journal of Theoretical Probability, Springer, vol. 15(3), pages 589-612, July.
    2. S. Dereich & F. Fehringer & A. Matoussi & M. Scheutzow, 2003. "On the Link Between Small Ball Probabilities and the Quantization Problem for Gaussian Measures on Banach Spaces," Journal of Theoretical Probability, Springer, vol. 16(1), pages 249-265, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:14:y:2001:i:1:d:10.1023_a:1007833401562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.