IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v13y2000i1d10.1023_a1007795228700.html
   My bibliography  Save this article

An Extension of Vervaat's Transformation and Its Consequences

Author

Listed:
  • L. Chaumont

Abstract

Vervaat(18) proved that by exchanging the pre-minimum and post-minimum parts of a Brownian bridge one obtains a normalized Brownian excursion. Let s ∈ (0, 1), then we extend this result by determining a random time m s such that when we exchange the pre-m s-part and the post-m s-part of a Brownian bridge, one gets a Brownian bridge conditioned to spend a time equal to s under 0. This transformation leads to some independence relations between some functionals of the Brownian bridge and the time it spends under 0. By splitting the Brownian motion at time m s in another manner, we get a new path transformation which explains an identity in law on quantiles due to Port. It also yields a pathwise construction of a Brownian bridge conditioned to spend a time equal to s under 0.

Suggested Citation

  • L. Chaumont, 2000. "An Extension of Vervaat's Transformation and Its Consequences," Journal of Theoretical Probability, Springer, vol. 13(1), pages 259-277, January.
  • Handle: RePEc:spr:jotpro:v:13:y:2000:i:1:d:10.1023_a:1007795228700
    DOI: 10.1023/A:1007795228700
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1007795228700
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1007795228700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fitzsimmons, P. J. & Getoor, R. K., 1995. "Occupation time distributions for Lévy bridges and excursions," Stochastic Processes and their Applications, Elsevier, vol. 58(1), pages 73-89, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marchal, Philippe, 1998. "Distribution of the occupation time for a Lévy process at passage times at 0," Stochastic Processes and their Applications, Elsevier, vol. 74(1), pages 123-131, May.
    2. Yano, Kouji & Yano, Yuko, 2008. "Remarks on the density of the law of the occupation time for Bessel bridges and stable excursions," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2175-2180, October.
    3. Giovanni Conforti & Tetiana Kosenkova & Sylvie Rœlly, 2019. "Conditioned Point Processes with Application to Lévy Bridges," Journal of Theoretical Probability, Springer, vol. 32(4), pages 2111-2134, December.
    4. Borovkov, Konstantin & McKinlay, Shaun, 2012. "The uniform law for sojourn measures of random fields," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1745-1749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:13:y:2000:i:1:d:10.1023_a:1007795228700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.