IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v10y1997i4d10.1023_a1022610532538.html
   My bibliography  Save this article

Large Deviations for Products of Empirical Probability Measures in the τ-Topology

Author

Listed:
  • Peter Eichelsbacher

    (Universität Bielefeld)

Abstract

We prove a large deviation principle (LDP) for products of empirical measures, where the state space S of the underlying sequence of i.i.d. random variables is Polish and the set of probability measures on S respectively S×S is endowed with the τ-topology. An improved form of a LDP for U-statistics and some conclusions from that are obtained as a particular application.

Suggested Citation

  • Peter Eichelsbacher, 1997. "Large Deviations for Products of Empirical Probability Measures in the τ-Topology," Journal of Theoretical Probability, Springer, vol. 10(4), pages 903-920, October.
  • Handle: RePEc:spr:jotpro:v:10:y:1997:i:4:d:10.1023_a:1022610532538
    DOI: 10.1023/A:1022610532538
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022610532538
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022610532538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bolthausen, Erwin & Schmock, Uwe, 1989. "On the maximum entropy principle for uniformly ergodic Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 33(1), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jinwen & Deng, Xiaoxue, 2013. "Large deviations and related problems for absorbing Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2398-2418.
    2. Eichelsbacher, Peter & Schmock, Uwe, 1998. "Exponential approximations in completely regular topological spaces and extensions of Sanov's theorem," Stochastic Processes and their Applications, Elsevier, vol. 77(2), pages 233-251, September.
    3. Horsthemke, Benedikt & Rüttermann, Markus, 1995. "On the maximum entropy principle for a class of stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 56(1), pages 117-132, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:10:y:1997:i:4:d:10.1023_a:1022610532538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.