IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v99y1998i1d10.1023_a1021796010050.html
   My bibliography  Save this article

Booster Method for Singularly-Perturbed One-Dimensional Convection-Diffusion Neumann Problems

Author

Listed:
  • S. Natesan

    (Bharathidasan University)

  • N. Ramanujam

    (Bharathidasan University)

Abstract

An improved numerical method for singularly-perturbed two-point boundary-value problems for second-order ordinary differential equations subject to Neumann-type boundary conditions is proposed. In this method, an asymptotic approximation is incorporated into a finite-difference scheme to improve the numerical solution. Uniform error estimates are derived when implemented in known difference schemes. Numerical results are presented in support of the proposed method.

Suggested Citation

  • S. Natesan & N. Ramanujam, 1998. "Booster Method for Singularly-Perturbed One-Dimensional Convection-Diffusion Neumann Problems," Journal of Optimization Theory and Applications, Springer, vol. 99(1), pages 53-72, October.
  • Handle: RePEc:spr:joptap:v:99:y:1998:i:1:d:10.1023_a:1021796010050
    DOI: 10.1023/A:1021796010050
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021796010050
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021796010050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Natesan & N. Ramanujam, 1998. "Initial-Value Technique for Singularly Perturbed Boundary-Value Problems for Second-Order Ordinary Differential Equations Arising in Chemical Reactor Theory," Journal of Optimization Theory and Applications, Springer, vol. 97(2), pages 455-470, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. Valanarasu & N. Ramanujan, 2003. "Asymptotic Initial-Value Method for Singularly-Perturbed Boundary-Value Problems for Second-Order Ordinary Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 167-182, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Valanarasu & N. Ramanujam, 2007. "Asymptotic Initial-Value Method for Second-Order Singular Perturbation Problems of Reaction-Diffusion Type with Discontinuous Source Term," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 371-383, June.
    2. T. Valanarasu & N. Ramanujan, 2003. "Asymptotic Initial-Value Method for Singularly-Perturbed Boundary-Value Problems for Second-Order Ordinary Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 167-182, January.
    3. Sahlan, M. Nosrati, 2019. "Four computational approaches for solving a class of boundary value problems arising in chemical reactor industry," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 253-268.
    4. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 0203, Economics Division, School of Social Sciences, University of Southampton.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:99:y:1998:i:1:d:10.1023_a:1021796010050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.