IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v98y1998i1d10.1023_a1022680629327.html
   My bibliography  Save this article

Nonstationary Iterated Tikhonov Regularization

Author

Listed:
  • M. Hanke

    (Fachbereich Mathematik, Universität Kaiserslautern)

  • C. W. Groetsch

    (University of Cincinnati)

Abstract

A convergence rate is established for nonstationary iterated Tikhonov regularization, applied to ill-posed problems involving closed, densely defined linear operators, under general conditions on the iteration parameters. It is also shown that an order-optimal accuracy is attained when a certain a posteriori stopping rule is used to determine the iteration number.

Suggested Citation

  • M. Hanke & C. W. Groetsch, 1998. "Nonstationary Iterated Tikhonov Regularization," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 37-53, July.
  • Handle: RePEc:spr:joptap:v:98:y:1998:i:1:d:10.1023_a:1022680629327
    DOI: 10.1023/A:1022680629327
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022680629327
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022680629327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buccini, Alessandro & Park, Yonggi & Reichel, Lothar, 2018. "Numerical aspects of the nonstationary modified linearized Bregman algorithm," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 386-398.
    2. Mittal, Gaurav, 2024. "Nonstationary iterated frozen Tikhonov regularization with uniformly convex penalty terms for solving inverse problems," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    3. Reddy, G.D., 2019. "A class of parameter choice rules for stationary iterated weighted Tikhonov regularization scheme," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 464-476.
    4. Yan, Xiong-bin & Zhang, Zheng-qiang & Wei, Ting, 2022. "Simultaneous inversion of a time-dependent potential coefficient and a time source term in a time fractional diffusion-wave equation," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:98:y:1998:i:1:d:10.1023_a:1022680629327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.