IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v97y1998i3d10.1023_a1022642126176.html
   My bibliography  Save this article

Extrema Constrained by a Family of Curves and Local Extrema

Author

Listed:
  • O. Dogaru

    (Polytechnic University of Bucharest)

  • I. Ţevy

    (Polytechnic University of Bucharest)

  • C. Udrişte

    (Polytechnic University of Bucharest)

Abstract

This paper considers the connections between the local extrema of a function f:D→R and the local extrema of the restrictions of f to specific subsets of D. In particular, such subsets may be parametrized curves, integral manifolds of a Pfaff system, Pfaff inequations. The paper shows the existence of C 1 or C 2-curves containing a given sequence of points. Such curves are then exploited to establish the connections between the local extrema of f and the local extrema of f constrained by the family of C 1 or C 2-curves. Surprisingly, what is true for C 1-curves fails to be true in part for C 2-curves. Sufficient conditions are given for a point to be a global minimum point of a convex function with respect to a family of curves.

Suggested Citation

  • O. Dogaru & I. Ţevy & C. Udrişte, 1998. "Extrema Constrained by a Family of Curves and Local Extrema," Journal of Optimization Theory and Applications, Springer, vol. 97(3), pages 605-621, June.
  • Handle: RePEc:spr:joptap:v:97:y:1998:i:3:d:10.1023_a:1022642126176
    DOI: 10.1023/A:1022642126176
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022642126176
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022642126176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:97:y:1998:i:3:d:10.1023_a:1022642126176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.