IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v94y1997i2d10.1023_a1022648115446.html
   My bibliography  Save this article

Proper Efficiency in Locally Convex Topological Vector Spaces

Author

Listed:
  • X. Y. Zheng

    (Yunnan University)

Abstract

We present a general treatment of proper efficiency, which was originally given in normed vector spaces; we introduce a new kind of efficiency in locally convex topological vector spaces. We examine the relationships among these efficiencies. As an application, we prove a strong Ekeland variational principle.

Suggested Citation

  • X. Y. Zheng, 1997. "Proper Efficiency in Locally Convex Topological Vector Spaces," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 469-486, August.
  • Handle: RePEc:spr:joptap:v:94:y:1997:i:2:d:10.1023_a:1022648115446
    DOI: 10.1023/A:1022648115446
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022648115446
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022648115446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Y. Xia & J. H. Qiu, 2008. "Superefficiency in Vector Optimization with Nearly Subconvexlike Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 125-137, January.
    2. M. Zarepisheh & E. Khorram, 2011. "On the transformation of lexicographic nonlinear multiobjective programs to single objective programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(2), pages 217-231, October.
    3. J. H. Qiu, 2007. "Superefficiency in Local Convex Spaces," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 19-35, October.
    4. X. D. H. Truong, 2001. "Existence and Density Results for Proper Efficiency in Cone Compact Sets," Journal of Optimization Theory and Applications, Springer, vol. 111(1), pages 173-194, October.
    5. L. Huerga & B. Jiménez & V. Novo, 2022. "New Notions of Proper Efficiency in Set Optimization with the Set Criterion," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 878-902, December.
    6. E. K. Makarov & N. N. Rachkovski, 1999. "Unified Representation of Proper Efficiency by Means of Dilating Cones," Journal of Optimization Theory and Applications, Springer, vol. 101(1), pages 141-165, April.
    7. Fernando García-Castaño & Miguel Ángel Melguizo-Padial & G. Parzanese, 2023. "Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 367-382, June.
    8. Y. D. Hu & C. Ling, 2000. "Connectedness of Cone Superefficient Point Sets in Locally Convex Topological Vector Spaces," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 433-446, November.
    9. J. H. Qiu & Y. Hao, 2010. "Scalarization of Henig Properly Efficient Points in Locally Convex Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 71-92, October.
    10. Zhi-Ang Zhou & Xin-Min Yang, 2014. "Scalarization of $$\epsilon $$ ϵ -Super Efficient Solutions of Set-Valued Optimization Problems in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 680-693, August.
    11. Angelo Guerraggio & Dinh The Luc, 2006. "Properly Maximal Points in Product Spaces," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 305-315, May.
    12. Q. S. Qiu & X. M. Yang, 2012. "Connectedness of Henig Weakly Efficient Solution Set for Set-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 439-449, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:94:y:1997:i:2:d:10.1023_a:1022648115446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.