IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v205y2025i1d10.1007_s10957-025-02616-5.html
   My bibliography  Save this article

A Euclidean Distance Matrix Model for Convex Clustering

Author

Listed:
  • Z. W. Wang

    (Beijing Institute of Technology
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • X. W. Liu

    (Beijing Institute of Technology)

  • Q. N. Li

    (Beijing Institute of Technology)

Abstract

Clustering has been one of the most basic and essential problems in unsupervised learning due to various applications in many critical fields. The recently proposed sum-of-norms (SON) model by Pelckmans et al. (in: PASCAL workshop on statistics and optimization of clustering, 2005), Lindsten et al. (in: IEEE statistical signal processing workshop, 2011) and Hocking et al. (in: Proceedings of the 28th international conference on international conference on machine learning, 2011) has received a lot of attention. The advantage of the SON model is the theoretical guarantee in terms of perfect recovery, established by Sun et al. (J Mach Learn Res 22(9):1–32, 2018). It also provides great opportunities for designing efficient algorithms for solving the SON model. The semismooth Newton based augmented Lagrangian method by Sun et al. (2018) has demonstrated its superior performance over the alternating direction method of multipliers and the alternating minimization algorithm. In this paper, we propose a Euclidean distance matrix model based on the SON model. Exact recovery property is achieved under proper assumptions. An efficient majorization penalty algorithm is proposed to solve the resulting model. Extensive numerical experiments are conducted to demonstrate the efficiency of the proposed model and the majorization penalty algorithm.

Suggested Citation

  • Z. W. Wang & X. W. Liu & Q. N. Li, 2025. "A Euclidean Distance Matrix Model for Convex Clustering," Journal of Optimization Theory and Applications, Springer, vol. 205(1), pages 1-22, April.
  • Handle: RePEc:spr:joptap:v:205:y:2025:i:1:d:10.1007_s10957-025-02616-5
    DOI: 10.1007/s10957-025-02616-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02616-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02616-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:205:y:2025:i:1:d:10.1007_s10957-025-02616-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.