IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v204y2025i3d10.1007_s10957-024-02561-9.html
   My bibliography  Save this article

Zeroth-Order Random Subspace Algorithm for Non-smooth Convex Optimization

Author

Listed:
  • Ryota Nozawa

    (The University of Tokyo)

  • Pierre-Louis Poirion

    (RIKEN)

  • Akiko Takeda

    (The University of Tokyo
    RIKEN)

Abstract

Zeroth-order optimization, which does not use derivative information, is one of the significant research areas in the field of mathematical optimization and machine learning. Although various studies have explored zeroth-order algorithms, one of the theoretical limitations is that oracle complexity depends on the dimension, i.e., on the number of variables, of the optimization problem. In this paper, to reduce the dependency of the dimension in oracle complexity, we propose a zeroth-order random subspace algorithm by combining a gradient-free algorithm (specifically, Gaussian randomized smoothing with central differences) with random projection. We derive the worst-case oracle complexity of our proposed method in non-smooth and convex settings; it is equivalent to standard results for full-dimensional non-smooth convex algorithms. Furthermore, we prove that ours also has a local convergence rate independent of the original dimension under additional assumptions. In addition to the theoretical results, numerical experiments show that when an objective function has a specific structure, the proposed method can become experimentally more efficient due to random projection.

Suggested Citation

  • Ryota Nozawa & Pierre-Louis Poirion & Akiko Takeda, 2025. "Zeroth-Order Random Subspace Algorithm for Non-smooth Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-31, March.
  • Handle: RePEc:spr:joptap:v:204:y:2025:i:3:d:10.1007_s10957-024-02561-9
    DOI: 10.1007/s10957-024-02561-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02561-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02561-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:204:y:2025:i:3:d:10.1007_s10957-024-02561-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.