IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v204y2025i1d10.1007_s10957-024-02588-y.html
   My bibliography  Save this article

Shape Optimization of Harmonic Helicity in Toroidal Domains

Author

Listed:
  • Rémi Robin

    (Sorbonne Université, PSL Research University)

  • Robin Roussel

    (Sorbonne Université)

Abstract

In this paper, we introduce a new shape functional defined for toroidal domains that we call harmonic helicity, and study its shape optimization. Given a toroidal domain, we consider its associated harmonic field. The latter is the magnetic field obtained uniquely up to normalization when imposing zero normal trace and zero electrical current inside the domain. We then study the helicity of this field, which is a quantity of interest in magneto-hydrodynamics corresponding to the $$L^2$$ L 2 product of the field with its image by the Biot–Savart operator. To do so, we begin by discussing the appropriate functional framework and an equivalent PDE characterization. We then focus on shape optimization, and we identify the shape gradient of the harmonic helicity. Finally, we study and implement an efficient numerical scheme to compute harmonic helicity and its shape gradient using finite elements exterior calculus.

Suggested Citation

  • Rémi Robin & Robin Roussel, 2025. "Shape Optimization of Harmonic Helicity in Toroidal Domains," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-43, January.
  • Handle: RePEc:spr:joptap:v:204:y:2025:i:1:d:10.1007_s10957-024-02588-y
    DOI: 10.1007/s10957-024-02588-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02588-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02588-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:204:y:2025:i:1:d:10.1007_s10957-024-02588-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.