IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i3d10.1007_s10957-024-02509-z.html
   My bibliography  Save this article

A Multilevel Method for Self-Concordant Minimization

Author

Listed:
  • Nick Tsipinakis

    (UniDistance Suisse)

  • Panos Parpas

    (Imperial College London)

Abstract

The analysis of second-order optimization methods based either on sub-sampling, randomization or sketching has two serious shortcomings compared to the conventional Newton method. The first shortcoming is that the analysis of the iterates has only been shown to be scale-invariant only under specific assumptions on the problem structure. The second shortfall is that the fast convergence rates of second-order methods have only been established by making assumptions regarding the input data. In this paper, we propose a randomized Newton method for self-concordant functions to address both shortfalls. We propose a Self-concordant Iterative-minimization-Galerkin-based Multilevel Algorithm (SIGMA) and establish its super-linear convergence rate using the theory of self-concordant functions. Our analysis is based on the connections between multigrid optimization methods, and the role of coarse-grained or reduced-order models in the computation of search directions. We take advantage of the insights from the analysis to significantly improve the performance of second-order methods in machine learning applications. We report encouraging initial experiments that suggest SIGMA outperforms other state-of-the-art sub-sampled/sketched Newton methods for both medium and large-scale problems.

Suggested Citation

  • Nick Tsipinakis & Panos Parpas, 2024. "A Multilevel Method for Self-Concordant Minimization," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2509-2559, December.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02509-z
    DOI: 10.1007/s10957-024-02509-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02509-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02509-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02509-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.