IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i2d10.1007_s10957-024-02502-6.html
   My bibliography  Save this article

Variance Reduction Techniques for Stochastic Proximal Point Algorithms

Author

Listed:
  • Cheik Traoré

    (Università degli Studi di Genova)

  • Vassilis Apidopoulos

    (Università degli Studi di Genova)

  • Saverio Salzo

    (Sapienza Università di Roma)

  • Silvia Villa

    (Università degli Studi di Genova)

Abstract

In the context of finite sums minimization, variance reduction techniques are widely used to improve the performance of state-of-the-art stochastic gradient methods. Their practical impact is clear, as well as their theoretical properties. Stochastic proximal point algorithms have been studied as an alternative to stochastic gradient algorithms since they are more stable with respect to the choice of the step size. However, their variance-reduced versions are not as well studied as the gradient ones. In this work, we propose the first unified study of variance reduction techniques for stochastic proximal point algorithms. We introduce a generic stochastic proximal-based algorithm that can be specified to give the proximal version of SVRG, SAGA, and some of their variants. For this algorithm, in the smooth setting, we provide several convergence rates for the iterates and the objective function values, which are faster than those of the vanilla stochastic proximal point algorithm. More specifically, for convex functions, we prove a sublinear convergence rate of O(1/k). In addition, under the Polyak-łojasiewicz condition, we obtain linear convergence rates. Finally, our numerical experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts in terms of the stability with respect to the choice of the step size in most cases, especially for difficult problems.

Suggested Citation

  • Cheik Traoré & Vassilis Apidopoulos & Saverio Salzo & Silvia Villa, 2024. "Variance Reduction Techniques for Stochastic Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1910-1939, November.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02502-6
    DOI: 10.1007/s10957-024-02502-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02502-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02502-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vassilis Apidopoulos & Nicolò Ginatta & Silvia Villa, 2022. "Convergence rates for the heavy-ball continuous dynamics for non-convex optimization, under Polyak–Łojasiewicz condition," Journal of Global Optimization, Springer, vol. 84(3), pages 563-589, November.
    2. Jin Zhang & Xide Zhu, 2022. "Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 564-597, February.
    3. Panos Toulis & Thibaut Horel & Edoardo M. Airoldi, 2021. "The proximal Robbins–Monro method," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 188-212, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rutger-Jan Lange & Bram van Os & Dick van Dijk, 2022. "Implicit score-driven filters for time-varying parameter models," Tinbergen Institute Discussion Papers 22-066/III, Tinbergen Institute, revised 21 Nov 2024.
    2. Bram van Os, 2023. "Information-Theoretic Time-Varying Density Modeling," Tinbergen Institute Discussion Papers 23-037/III, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02502-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.