IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v201y2024i3d10.1007_s10957-024-02432-3.html
   My bibliography  Save this article

Local Boundedness for Minimizers of Anisotropic Functionals with Monomial Weights

Author

Listed:
  • Filomena Feo

    (Università degli Studi di Napoli “Parthenope”)

  • Antonia Passarelli di Napoli

    (Università degli Studi di Napoli “Federico II”)

  • Maria Rosaria Posteraro

    (Università degli Studi di Napoli “Federico II”)

Abstract

We study the local boundedness of minimizers of non uniformly elliptic integral functionals with a suitable anisotropic $$p,q-$$ p , q - growth condition. More precisely, the growth condition of the integrand function $$f(x,\nabla u)$$ f ( x , ∇ u ) from below involves different $$p_i>1$$ p i > 1 powers of the partial derivatives of u and some monomial weights $$|x_i|^{\alpha _i p_i}$$ | x i | α i p i with $$\alpha _i \in [0,1)$$ α i ∈ [ 0 , 1 ) that may degenerate to zero. Otherwise from above it is controlled by a q power of the modulus of the gradient of u with $$q\ge \max _i p_i$$ q ≥ max i p i and an unbounded weight $$\mu (x)$$ μ ( x ) . The main tool in the proof is an anisotropic Sobolev inequality with respect to the weights $$|x_i|^{\alpha _i p_i}$$ | x i | α i p i .

Suggested Citation

  • Filomena Feo & Antonia Passarelli di Napoli & Maria Rosaria Posteraro, 2024. "Local Boundedness for Minimizers of Anisotropic Functionals with Monomial Weights," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1313-1332, June.
  • Handle: RePEc:spr:joptap:v:201:y:2024:i:3:d:10.1007_s10957-024-02432-3
    DOI: 10.1007/s10957-024-02432-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02432-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02432-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mariapia Rosa & Antonio Giuseppe Grimaldi, 2022. "A Local Boundedness Result for a Class of Obstacle Problems with Non-Standard Growth Conditions," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 282-296, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:201:y:2024:i:3:d:10.1007_s10957-024-02432-3. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.