IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v196y2023i1d10.1007_s10957-022-02090-3.html
   My bibliography  Save this article

A Modified Michael’s Selection Theorem with Application to Generalized Nash Equilibrium Problem

Author

Listed:
  • Marco Castellani

    (University of L’Aquila)

  • Massimiliano Giuli

    (University of L’Aquila)

Abstract

This paper provides a sufficient condition for the existence of solutions for generalized Nash equilibrium problems in the infinite-dimensional setting and with a countable (possibly infinite) number of players. The result has been achieved as a consequence of a modified version of Michael’s selection theorem that works even when the range space is not metrizable and the set-valued map has not closed values.

Suggested Citation

  • Marco Castellani & Massimiliano Giuli, 2023. "A Modified Michael’s Selection Theorem with Application to Generalized Nash Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 199-211, January.
  • Handle: RePEc:spr:joptap:v:196:y:2023:i:1:d:10.1007_s10957-022-02090-3
    DOI: 10.1007/s10957-022-02090-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02090-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02090-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    2. Gale, D. & Mas-Colell, A., 1975. "An equilibrium existence theorem for a general model without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 2(1), pages 9-15, March.
    3. Paolo Cubiotti & Jen-Chih Yao, 2010. "Nash equilibria of generalized games in normed spaces without upper semicontinuity," Journal of Global Optimization, Springer, vol. 46(4), pages 509-519, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhishek Singh & Debdas Ghosh & Qamrul Hasan Ansari, 2024. "Inexact Newton Method for Solving Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1333-1363, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert M. Anderson & Haosui Duanmu & M. Ali Khan & Metin Uyanik, 2022. "Walrasian equilibrium theory with and without free-disposal: theorems and counterexamples in an infinite-agent context," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 387-412, April.
    2. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    3. Jean Guillaume Forand & Metin Uyanık, 2019. "Fixed-point approaches to the proof of the Bondareva–Shapley Theorem," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 117-124, May.
    4. Aliprantis, Charalambos D. & Tourky, Rabee & Yannelis, Nicholas C., 2001. "A Theory of Value with Non-linear Prices: Equilibrium Analysis beyond Vector Lattices," Journal of Economic Theory, Elsevier, vol. 100(1), pages 22-72, September.
    5. Yves Balasko & Mich Tvede, 2010. "General equilibrium without utility functions: how far to go?," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 45(1), pages 201-225, October.
    6. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.
    7. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.
    8. Hichem Ben-El-Mechaiekh & Philippe Bich & Monique Florenzano, 2009. "General equilibrium and fixed-point theory: a partial survey," PSE-Ecole d'économie de Paris (Postprint) hal-00755998, HAL.
    9. L. J. Lin & Y. H. Liu, 2008. "The Study of Abstract Economies with Two Constraint Correspondences," Journal of Optimization Theory and Applications, Springer, vol. 137(1), pages 41-52, April.
    10. Llinarès, Juan Vicente, 1998. "Existence of equilibrium in generalized games with non-convex strategy spaces," CEPREMAP Working Papers (Couverture Orange) 9801, CEPREMAP.
    11. Charalambos Aliprantis & Rabee Tourky, 2009. "Equilibria in incomplete assets economies with infinite dimensional spot markets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 221-262, February.
    12. Florenzano Monique, 1991. "Quasiequilibria in abstract economies application to the overlapping generations models," CEPREMAP Working Papers (Couverture Orange) 9117, CEPREMAP.
    13. Podczeck, Konrad & Yannelis, Nicholas C., 2008. "Equilibrium theory with asymmetric information and with infinitely many commodities," Journal of Economic Theory, Elsevier, vol. 141(1), pages 152-183, July.
    14. Bagh, Adib, 1998. "Equilibrium in abstract economies without the lower semi-continuity of the constraint maps," Journal of Mathematical Economics, Elsevier, vol. 30(2), pages 175-185, September.
    15. Won, Dong Chul & Yannelis, Nicholas C., 2008. "Equilibrium theory with unbounded consumption sets and non-ordered preferences: Part I. Non-satiation," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1266-1283, December.
    16. Wei He & Nicholas C. Yannelis, 2016. "Existence of Walrasian equilibria with discontinuous, non-ordered, interdependent and price-dependent preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 497-513, March.
    17. Kim, Sung H., 1997. "Continuous Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 28(1), pages 69-84, August.
    18. Won, Dong Chul & Yannelis, Nicholas C., 2011. "Equilibrium theory with satiable and non-ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 245-250, March.
    19. Balder, Erik J., 2000. "Incompatibility of Usual Conditions for Equilibrium Existence in Continuum Economies without Ordered Preferences," Journal of Economic Theory, Elsevier, vol. 93(1), pages 110-117, July.
    20. Lionel DE BOISDEFFRE, 2015. "Existence of financial equilibrium with differential information: the no-arbitrage characterization," Working Papers 2015-2016_5, CATT - UPPA - Université de Pau et des Pays de l'Adour, revised Nov 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:196:y:2023:i:1:d:10.1007_s10957-022-02090-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.