IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v185y2020i2d10.1007_s10957-020-01665-2.html
   My bibliography  Save this article

Analysis and Optimization of the Chemostat Model with a Lateral Diffusive Compartment

Author

Listed:
  • María Crespo

    (Universidad Politécnica de Madrid)

  • Alain Rapaport

    (Université Montpellier)

Abstract

We consider the chemostat model with a side compartment connected by pure diffusion, and analyze its asymptotic properties. We investigate conditions under which this spatial structure is beneficial for species survival and conversion yield, compared to single chemostat. Under these conditions, we study the optimization problem for the best structure (volume distribution and diffusion rate), which minimizes the volume required to attain a desired conversion yield. The analysis reveals that particular configurations with a single tank connected by diffusion to the input stream can be the most efficient.

Suggested Citation

  • María Crespo & Alain Rapaport, 2020. "Analysis and Optimization of the Chemostat Model with a Lateral Diffusive Compartment," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 597-621, May.
  • Handle: RePEc:spr:joptap:v:185:y:2020:i:2:d:10.1007_s10957-020-01665-2
    DOI: 10.1007/s10957-020-01665-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01665-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01665-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wade, M.J. & Harmand, J. & Benyahia, B. & Bouchez, T. & Chaillou, S. & Cloez, B. & Godon, J.-J. & Moussa Boudjemaa, B. & Rapaport, A. & Sari, T. & Arditi, R. & Lobry, C., 2016. "Perspectives in mathematical modelling for microbial ecology," Ecological Modelling, Elsevier, vol. 321(C), pages 64-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulrahman Ali Alsolami & Miled El Hajji, 2023. "Mathematical Analysis of a Bacterial Competition in a Continuous Reactor in the Presence of a Virus," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    2. Gerrit Ansmann & Tobias Bollenbach, 2021. "Building clone-consistent ecosystem models," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    3. Hanan H. Almuashi & Nada A. Almuallem & Miled El Hajji, 2024. "The Effect of Leachate Recycling on the Dynamics of Two Competing Bacteria with an Obligate One-Way Beneficial Relationship in a Chemostat," Mathematics, MDPI, vol. 12(23), pages 1-19, December.
    4. Maciej Leszczynski & Przemyslaw Perlikowski & Piotr Brzeski, 2024. "A Unified Approach for the Calculation of Different Sample-Based Measures with the Single Sampling Method," Mathematics, MDPI, vol. 12(7), pages 1-19, March.
    5. Andrey Degermendzhi & Alexander Abakumov, 2023. "Control Factors for the Equilibrium Composition of Microbial Communities in Open Systems: Theory and Experiments," Mathematics, MDPI, vol. 11(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:185:y:2020:i:2:d:10.1007_s10957-020-01665-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.