IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v185y2020i2d10.1007_s10957-020-01655-4.html
   My bibliography  Save this article

Regularization in Banach Spaces with Respect to the Bregman Distance

Author

Listed:
  • Mohamed Soueycatt

    (AL-Andalus University for Medical Sciences)

  • Yara Mohammad

    (AL-Andalus University for Medical Sciences)

  • Yamar Hamwi

    (Tishreen University)

Abstract

The Moreau envelope, also known as Moreau–Yosida regularization, and the associated proximal mapping have been widely used in Hilbert and Banach spaces. They have been objects of great interest for optimizers since their conception more than half a century ago. They were generalized by the notion of the D-Moreau envelope and D-proximal mapping by replacing the usual square of the Euclidean distance with the conception of Bregman distance for a convex function. Recently, the D-Moreau envelope has been developed in a very general setting. In this article, we present a regularizing and smoothing technique for convex functions defined in Banach spaces. We also investigate several properties of the D-Moreau envelope function and its related D-proximal mapping in Banach spaces. For technical reasons, we restrict our attention to the Lipschitz continuity property of the D-proximal mapping and differentiability properties of the D-Moreau envelope function. In particular, we prove the Fréchet differentiability property of the envelope and the Lipschitz continuity property of its derivative.

Suggested Citation

  • Mohamed Soueycatt & Yara Mohammad & Yamar Hamwi, 2020. "Regularization in Banach Spaces with Respect to the Bregman Distance," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 327-342, May.
  • Handle: RePEc:spr:joptap:v:185:y:2020:i:2:d:10.1007_s10957-020-01655-4
    DOI: 10.1007/s10957-020-01655-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01655-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01655-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dan Butnariu & Elena Resmerita, 2006. "Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces," Abstract and Applied Analysis, Hindawi, vol. 2006, pages 1-39, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanikar Muangchoo & Poom Kumam & Yeol Je Cho & Sompong Dhompongsa & Sakulbuth Ekvittayaniphon, 2019. "Approximating Fixed Points of Bregman Generalized α -Nonexpansive Mappings," Mathematics, MDPI, vol. 7(8), pages 1-28, August.
    2. Mostafa Ghadampour & Ebrahim Soori & Ravi P. Agarwal & Donal O’Regan, 2022. "A Strong Convergence Theorem for Solving an Equilibrium Problem and a Fixed Point Problem Using the Bregman Distance," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 854-877, December.
    3. Lateef Olakunle Jolaoso & Adeolu Taiwo & Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2020. "A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 744-766, June.
    4. Mohd Asad & Mohammad Dilshad & Doaa Filali & Mohammad Akram, 2023. "A Modified Viscosity-Type Self-Adaptive Iterative Algorithm for Common Solution of Split Problems with Multiple Output Sets in Hilbert Spaces," Mathematics, MDPI, vol. 11(19), pages 1-18, October.
    5. Simeon Reich & Truong Minh Tuyen, 2021. "Projection Algorithms for Solving the Split Feasibility Problem with Multiple Output Sets," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 861-878, September.
    6. Jiawei Chen & Zhongping Wan & Liuyang Yuan & Yue Zheng, 2011. "Approximation of Fixed Points of Weak Bregman Relatively Nonexpansive Mappings in Banach Spaces," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2011, pages 1-23, July.
    7. Simeon Reich & Truong Minh Tuyen, 2020. "Two Projection Algorithms for Solving the Split Common Fixed Point Problem," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 148-168, July.
    8. Simeon Reich & Truong Minh Tuyen & Mai Thi Ngoc Ha, 2021. "An optimization approach to solving the split feasibility problem in Hilbert spaces," Journal of Global Optimization, Springer, vol. 79(4), pages 837-852, April.
    9. Roushanak Lotfikar & Gholamreza Zamani Eskandani & Jong-Kyu Kim & Michael Th. Rassias, 2023. "Subgradient Extra-Gradient Algorithm for Pseudomonotone Equilibrium Problems and Fixed-Point Problems of Bregman Relatively Nonexpansive Mappings," Mathematics, MDPI, vol. 11(23), pages 1-21, November.
    10. Lateef Olakunle Jolaoso & Christian Chibueze Okeke & Yekini Shehu, 2021. "Extragradient Algorithm for Solving Pseudomonotone Equilibrium Problem with Bregman Distance in Reflexive Banach Spaces," Networks and Spatial Economics, Springer, vol. 21(4), pages 873-903, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:185:y:2020:i:2:d:10.1007_s10957-020-01655-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.