On a Compound Duality Classification for Geometric Programming
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-018-1415-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- GOCHET, Willy & SMEERS, Yves, 1975. "Constraint sets of geometric programs characterized by auxiliary problems," LIDAM Reprints CORE 237, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- François Glineur, 2001. "Proving Strong Duality for Geometric Optimization Using a Conic Formulation," Annals of Operations Research, Springer, vol. 105(1), pages 155-184, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Robert Chares & François Glineur, 2008.
"An interior-point method for the single-facility location problem with mixed norms using a conic formulation,"
Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
- CHARES, Robert & GLINEUR, François, 2007. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," LIDAM Discussion Papers CORE 2007071, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- CHARES, Robert & GLINEUR, François, 2009. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," LIDAM Reprints CORE 2078, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- F. Glineur & T. Terlaky, 2004.
"Conic Formulation for l p -Norm Optimization,"
Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 285-307, August.
- GLINEUR, François & TERLAKY, Tamas, 2004. "Conic formulation for lp-norm optimization," LIDAM Reprints CORE 1726, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Yue Lu & Ching-Yu Yang & Jein-Shan Chen & Hou-Duo Qi, 2020. "The decompositions with respect to two core non-symmetric cones," Journal of Global Optimization, Springer, vol. 76(1), pages 155-188, January.
More about this item
Keywords
Geometric programming; Duality results; Classification Theory;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:180:y:2019:i:3:d:10.1007_s10957-018-1415-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.