IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v178y2018i2d10.1007_s10957-018-1278-5.html
   My bibliography  Save this article

Quasi-Strict Feasibility of Generalized Mixed Variational Inequalities in Reflexive Banach Spaces

Author

Listed:
  • Xue-ping Luo

    (Southwest University for Nationalities)

Abstract

In this paper, quasi-strict feasibility of a generalized mixed variational inequality as a new notation is introduced, which is weaker than its strict feasibility and recovers the existing concept of strict feasibility for a generalized variational inequality. By using the equivalent characterization of the nonemptiness and boundedness of the solution set for the generalized mixed variational inequality, it is proved that quasi-strict feasibility is a sufficient condition for the generalized mixed variational inequality with a f-pseudomonotone and upper hemicontinuous mapping to have a nonempty and bounded solution set in reflexive Banach spaces. Our results generalize and extend some known results in Zhong and Huang (J Optim Theory Appl 152(3):696–709, 2012).

Suggested Citation

  • Xue-ping Luo, 2018. "Quasi-Strict Feasibility of Generalized Mixed Variational Inequalities in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 439-454, August.
  • Handle: RePEc:spr:joptap:v:178:y:2018:i:2:d:10.1007_s10957-018-1278-5
    DOI: 10.1007/s10957-018-1278-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1278-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1278-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren-you Zhong & Nan-jing Huang, 2010. "Stability Analysis for Minty Mixed Variational Inequality in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 454-472, December.
    2. F. Q. Xia & N. J. Huang, 2009. "Auxiliary Principle and Iterative Algorithms for Lions-Stampacchia Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 377-389, February.
    3. Ren-you Zhong & Nan-jing Huang, 2012. "Strict Feasibility for Generalized Mixed Variational Inequality in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 696-709, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren-you Zhong & Nan-jing Huang, 2012. "Strict Feasibility for Generalized Mixed Variational Inequality in Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 696-709, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:178:y:2018:i:2:d:10.1007_s10957-018-1278-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.