IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v176y2018i2d10.1007_s10957-017-1194-0.html
   My bibliography  Save this article

A New Infeasible Mehrotra-Type Predictor–Corrector Algorithm for Nonlinear Complementarity Problems Over Symmetric Cones

Author

Listed:
  • Huali Zhao

    (Xidian University
    Xianyang Normal University)

  • Hongwei Liu

    (Xidian University)

Abstract

This paper establishes a theoretical framework of infeasible Mehrotra-type predictor–corrector algorithm for nonmonotone nonlinear complementarity problems over symmetric cones which can be regarded as an extension the Mehrotra’s algorithm proposed by Salahi et al. (On Mehrotra-type predictor–corrector algorithms. SIAM J Optim 18(4):1377–1397, 2005) from nonnegative orthant to symmetric cone. The iteration complexity of the algorithm is estimated, and some numerical results are provided. The numerical results show that the algorithm is efficient and reliable.

Suggested Citation

  • Huali Zhao & Hongwei Liu, 2018. "A New Infeasible Mehrotra-Type Predictor–Corrector Algorithm for Nonlinear Complementarity Problems Over Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 410-427, February.
  • Handle: RePEc:spr:joptap:v:176:y:2018:i:2:d:10.1007_s10957-017-1194-0
    DOI: 10.1007/s10957-017-1194-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1194-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1194-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Muramatsu, 2002. "On a Commutative Class of Search Directions for Linear Programming over Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 112(3), pages 595-625, March.
    2. G. Q. Wang & Y. Q. Bai, 2012. "A Class of Polynomial Interior Point Algorithms for the Cartesian P-Matrix Linear Complementarity Problem over Symmetric Cones," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 739-772, March.
    3. Y. B. Zhao & J. Y. Han, 1999. "Two Interior-Point Methods for Nonlinear P *(τ)-Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 659-679, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Q. Wang & L. C. Kong & J. Y. Tao & G. Lesaja, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Feasible Interior-Point Method for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 588-604, August.
    2. Li, Yuan-Min & Wei, Deyun, 2015. "A generalized smoothing Newton method for the symmetric cone complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 335-345.
    3. G. Wang & C. Yu & K. Teo, 2014. "A full-Newton step feasible interior-point algorithm for $$P_*(\kappa )$$ P ∗ ( κ ) -linear complementarity problems," Journal of Global Optimization, Springer, vol. 59(1), pages 81-99, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:2:d:10.1007_s10957-017-1194-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.