IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v171y2016i1d10.1007_s10957-016-0981-3.html
   My bibliography  Save this article

Computing Laser Beam Paths in Optical Cavities: An Approach Based on Geometric Newton Method

Author

Listed:
  • Davide Cuccato

    (University of Padova)

  • Alessandro Saccon

    (Eindhoven University of Technology)

  • Antonello Ortolan

    (INFN - National Laboratories of Legnaro)

  • Alessandro Beghi

    (University of Padova)

Abstract

In the last decade, increasing attention has been drawn to high-precision optical experiments, which push resolution and accuracy of the measured quantities beyond their current limits. This challenge requires to place optical elements (e.g., mirrors, lenses) and to steer light beams with subnanometer precision. Existing methods for beam direction computing in resonators, e.g., iterative ray tracing or generalized ray transfer matrices, are either computationally expensive or rely on overparameterized models of optical elements. By exploiting Fermat’s principle, we develop a novel method to compute the steady-state beam configurations in resonant optical cavities formed by spherical mirrors, as a function of mirror positions and curvature radii. The proposed procedure is based on the geometric Newton method on matrix manifold, a tool with second-order convergence rate, that relies on a second-order model of the cavity optical length. As we avoid coordinates to parametrize the beam position on mirror surfaces, the computation of the second-order model does not involve the second derivatives of the parametrization. With the help of numerical tests, we show that the convergence properties of our procedure hold for non-planar polygonal cavities, and we assess the effectiveness of the geometric Newton method in determining their configurations with high degree of accuracy and negligible computational effort.

Suggested Citation

  • Davide Cuccato & Alessandro Saccon & Antonello Ortolan & Alessandro Beghi, 2016. "Computing Laser Beam Paths in Optical Cavities: An Approach Based on Geometric Newton Method," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 297-315, October.
  • Handle: RePEc:spr:joptap:v:171:y:2016:i:1:d:10.1007_s10957-016-0981-3
    DOI: 10.1007/s10957-016-0981-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-016-0981-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-016-0981-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabiana R. Oliveira & Fabrícia R. Oliveira, 2021. "A Global Newton Method for the Nonsmooth Vector Fields on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 259-273, July.
    2. Petre Birtea & Dan Comănescu, 2017. "Newton Algorithm on Constraint Manifolds and the 5-Electron Thomson Problem," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 563-583, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:171:y:2016:i:1:d:10.1007_s10957-016-0981-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.